MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL

An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chen, Xuemin, Detrick, Craig Arlen, Skerl, Gary Jacob, Tokushige, Darren, Katre, Prashant, Russo, Fabian, Li, Yong
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chen, Xuemin
Detrick, Craig Arlen
Skerl, Gary Jacob
Tokushige, Darren
Katre, Prashant
Russo, Fabian
Li, Yong
description An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021136170A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021136170A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021136170A13</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYcA6YCJoPUwmZmDcDbubqJUEWSvRQLyBFzeKB7B6zff-afLaI1ViOFVGZ8TsAOtahTCINVA7ezxBaR2IDVBwK8QexJA2xccquh2nnlAZCgwIZFWZvt_Gf0RxMrgXAs-uVQ4eDhIqQBo7ftQmOKvzZHLtbkNc_HaWLEsOVKWxf5zj0HeXeI_Pc-PzVZ5l6022XWG2_k-9ASWePf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><source>esp@cenet</source><creator>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</creator><creatorcontrib>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</creatorcontrib><description>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210506&amp;DB=EPODOC&amp;CC=US&amp;NR=2021136170A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210506&amp;DB=EPODOC&amp;CC=US&amp;NR=2021136170A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Detrick, Craig Arlen</creatorcontrib><creatorcontrib>Skerl, Gary Jacob</creatorcontrib><creatorcontrib>Tokushige, Darren</creatorcontrib><creatorcontrib>Katre, Prashant</creatorcontrib><creatorcontrib>Russo, Fabian</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><description>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYcA6YCJoPUwmZmDcDbubqJUEWSvRQLyBFzeKB7B6zff-afLaI1ViOFVGZ8TsAOtahTCINVA7ezxBaR2IDVBwK8QexJA2xccquh2nnlAZCgwIZFWZvt_Gf0RxMrgXAs-uVQ4eDhIqQBo7ftQmOKvzZHLtbkNc_HaWLEsOVKWxf5zj0HeXeI_Pc-PzVZ5l6022XWG2_k-9ASWePf8</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Chen, Xuemin</creator><creator>Detrick, Craig Arlen</creator><creator>Skerl, Gary Jacob</creator><creator>Tokushige, Darren</creator><creator>Katre, Prashant</creator><creator>Russo, Fabian</creator><creator>Li, Yong</creator><scope>EVB</scope></search><sort><creationdate>20210506</creationdate><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><author>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021136170A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Detrick, Craig Arlen</creatorcontrib><creatorcontrib>Skerl, Gary Jacob</creatorcontrib><creatorcontrib>Tokushige, Darren</creatorcontrib><creatorcontrib>Katre, Prashant</creatorcontrib><creatorcontrib>Russo, Fabian</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xuemin</au><au>Detrick, Craig Arlen</au><au>Skerl, Gary Jacob</au><au>Tokushige, Darren</au><au>Katre, Prashant</au><au>Russo, Fabian</au><au>Li, Yong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><date>2021-05-06</date><risdate>2021</risdate><abstract>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021136170A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Xuemin&rft.date=2021-05-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021136170A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true