MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL
An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data col...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chen, Xuemin Detrick, Craig Arlen Skerl, Gary Jacob Tokushige, Darren Katre, Prashant Russo, Fabian Li, Yong |
description | An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021136170A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021136170A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021136170A13</originalsourceid><addsrcrecordid>eNqNzDEKwkAQheE0FqLeYcA6YCJoPUwmZmDcDbubqJUEWSvRQLyBFzeKB7B6zff-afLaI1ViOFVGZ8TsAOtahTCINVA7ezxBaR2IDVBwK8QexJA2xccquh2nnlAZCgwIZFWZvt_Gf0RxMrgXAs-uVQ4eDhIqQBo7ftQmOKvzZHLtbkNc_HaWLEsOVKWxf5zj0HeXeI_Pc-PzVZ5l6022XWG2_k-9ASWePf8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><source>esp@cenet</source><creator>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</creator><creatorcontrib>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</creatorcontrib><description>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210506&DB=EPODOC&CC=US&NR=2021136170A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210506&DB=EPODOC&CC=US&NR=2021136170A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Detrick, Craig Arlen</creatorcontrib><creatorcontrib>Skerl, Gary Jacob</creatorcontrib><creatorcontrib>Tokushige, Darren</creatorcontrib><creatorcontrib>Katre, Prashant</creatorcontrib><creatorcontrib>Russo, Fabian</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><description>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDEKwkAQheE0FqLeYcA6YCJoPUwmZmDcDbubqJUEWSvRQLyBFzeKB7B6zff-afLaI1ViOFVGZ8TsAOtahTCINVA7ezxBaR2IDVBwK8QexJA2xccquh2nnlAZCgwIZFWZvt_Gf0RxMrgXAs-uVQ4eDhIqQBo7ftQmOKvzZHLtbkNc_HaWLEsOVKWxf5zj0HeXeI_Pc-PzVZ5l6022XWG2_k-9ASWePf8</recordid><startdate>20210506</startdate><enddate>20210506</enddate><creator>Chen, Xuemin</creator><creator>Detrick, Craig Arlen</creator><creator>Skerl, Gary Jacob</creator><creator>Tokushige, Darren</creator><creator>Katre, Prashant</creator><creator>Russo, Fabian</creator><creator>Li, Yong</creator><scope>EVB</scope></search><sort><creationdate>20210506</creationdate><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><author>Chen, Xuemin ; Detrick, Craig Arlen ; Skerl, Gary Jacob ; Tokushige, Darren ; Katre, Prashant ; Russo, Fabian ; Li, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021136170A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xuemin</creatorcontrib><creatorcontrib>Detrick, Craig Arlen</creatorcontrib><creatorcontrib>Skerl, Gary Jacob</creatorcontrib><creatorcontrib>Tokushige, Darren</creatorcontrib><creatorcontrib>Katre, Prashant</creatorcontrib><creatorcontrib>Russo, Fabian</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xuemin</au><au>Detrick, Craig Arlen</au><au>Skerl, Gary Jacob</au><au>Tokushige, Darren</au><au>Katre, Prashant</au><au>Russo, Fabian</au><au>Li, Yong</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL</title><date>2021-05-06</date><risdate>2021</risdate><abstract>An apparatus and method for providing ML processing for one or more ML applications operating on one or more Internet of Things (IoT) devices includes receiving a ML request from an IoT device. The ML request can be generated by a ML application operating on the IoT device and include input data collected by the first ML application. A ML model to perform ML processing of the input data included in the ML request is identified and provided to an ML core for ML processing along with the input data included in the first ML request. The ML core produces ML processing output data based on ML processing by the ML core of input data included in the ML request using the ML model. The ML processing output data can be transmitted to the IoT device.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021136170A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY PHYSICS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | MACHINE-LEARNING APPLICATION PROXY FOR IOT DEVICES INCLUDING LARGE-SCALE DATA COLLECTION USING DYNAMIC SERVLETS WITH ACCESS CONTROL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chen,%20Xuemin&rft.date=2021-05-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021136170A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |