USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME

Telemetry data gathered from active deployed SAN nodes is used to create a machine learning model that predicts storage system performance, e.g. in terms of response time. The telemetry data may be filtered to remove outlier values and less relevant information before creating the training dataset....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Arnan, Ron, Sahin, Adnan, Prado, Adriana, Da Silva, Pablo, Ferreira, Paulo, Dagan, Hagay
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Arnan, Ron
Sahin, Adnan
Prado, Adriana
Da Silva, Pablo
Ferreira, Paulo
Dagan, Hagay
description Telemetry data gathered from active deployed SAN nodes is used to create a machine learning model that predicts storage system performance, e.g. in terms of response time. The telemetry data may be filtered to remove outlier values and less relevant information before creating the training dataset. Engineered features may be created that include types of data that are not present in the telemetry data. For example, data types from the telemetry data may be combined to create engineered features that are more relevant than the individual data types. The engineered features are included in the training dataset. The machine learning model may be used to test possible configurations for a planned SAN node based on expected workload and performance requirements. Outputted data may include satisfactory configurations for a planned storage system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021124510A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021124510A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021124510A13</originalsourceid><addsrcrecordid>eNqNyjEKwjAUBuAuDqLe4YGz0EQ9QGj-1ECTlLzXoVMpEifRQr0_Lh7A6Vu-bdUN7GNLgg4BkkeyRgy5nAJZ7xwyohBLyqYF8ciCwCSJ-gzrG6EM7lNkkPiAfbV5zM-1HH7uqqODNLdTWd5TWZf5Xl7lMw2sa62UvlxVbdT5v_UFkdIvCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME</title><source>esp@cenet</source><creator>Arnan, Ron ; Sahin, Adnan ; Prado, Adriana ; Da Silva, Pablo ; Ferreira, Paulo ; Dagan, Hagay</creator><creatorcontrib>Arnan, Ron ; Sahin, Adnan ; Prado, Adriana ; Da Silva, Pablo ; Ferreira, Paulo ; Dagan, Hagay</creatorcontrib><description>Telemetry data gathered from active deployed SAN nodes is used to create a machine learning model that predicts storage system performance, e.g. in terms of response time. The telemetry data may be filtered to remove outlier values and less relevant information before creating the training dataset. Engineered features may be created that include types of data that are not present in the telemetry data. For example, data types from the telemetry data may be combined to create engineered features that are more relevant than the individual data types. The engineered features are included in the training dataset. The machine learning model may be used to test possible configurations for a planned SAN node based on expected workload and performance requirements. Outputted data may include satisfactory configurations for a planned storage system.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210429&amp;DB=EPODOC&amp;CC=US&amp;NR=2021124510A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210429&amp;DB=EPODOC&amp;CC=US&amp;NR=2021124510A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Arnan, Ron</creatorcontrib><creatorcontrib>Sahin, Adnan</creatorcontrib><creatorcontrib>Prado, Adriana</creatorcontrib><creatorcontrib>Da Silva, Pablo</creatorcontrib><creatorcontrib>Ferreira, Paulo</creatorcontrib><creatorcontrib>Dagan, Hagay</creatorcontrib><title>USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME</title><description>Telemetry data gathered from active deployed SAN nodes is used to create a machine learning model that predicts storage system performance, e.g. in terms of response time. The telemetry data may be filtered to remove outlier values and less relevant information before creating the training dataset. Engineered features may be created that include types of data that are not present in the telemetry data. For example, data types from the telemetry data may be combined to create engineered features that are more relevant than the individual data types. The engineered features are included in the training dataset. The machine learning model may be used to test possible configurations for a planned SAN node based on expected workload and performance requirements. Outputted data may include satisfactory configurations for a planned storage system.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwjAUBuAuDqLe4YGz0EQ9QGj-1ECTlLzXoVMpEifRQr0_Lh7A6Vu-bdUN7GNLgg4BkkeyRgy5nAJZ7xwyohBLyqYF8ciCwCSJ-gzrG6EM7lNkkPiAfbV5zM-1HH7uqqODNLdTWd5TWZf5Xl7lMw2sa62UvlxVbdT5v_UFkdIvCg</recordid><startdate>20210429</startdate><enddate>20210429</enddate><creator>Arnan, Ron</creator><creator>Sahin, Adnan</creator><creator>Prado, Adriana</creator><creator>Da Silva, Pablo</creator><creator>Ferreira, Paulo</creator><creator>Dagan, Hagay</creator><scope>EVB</scope></search><sort><creationdate>20210429</creationdate><title>USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME</title><author>Arnan, Ron ; Sahin, Adnan ; Prado, Adriana ; Da Silva, Pablo ; Ferreira, Paulo ; Dagan, Hagay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021124510A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Arnan, Ron</creatorcontrib><creatorcontrib>Sahin, Adnan</creatorcontrib><creatorcontrib>Prado, Adriana</creatorcontrib><creatorcontrib>Da Silva, Pablo</creatorcontrib><creatorcontrib>Ferreira, Paulo</creatorcontrib><creatorcontrib>Dagan, Hagay</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arnan, Ron</au><au>Sahin, Adnan</au><au>Prado, Adriana</au><au>Da Silva, Pablo</au><au>Ferreira, Paulo</au><au>Dagan, Hagay</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME</title><date>2021-04-29</date><risdate>2021</risdate><abstract>Telemetry data gathered from active deployed SAN nodes is used to create a machine learning model that predicts storage system performance, e.g. in terms of response time. The telemetry data may be filtered to remove outlier values and less relevant information before creating the training dataset. Engineered features may be created that include types of data that are not present in the telemetry data. For example, data types from the telemetry data may be combined to create engineered features that are more relevant than the individual data types. The engineered features are included in the training dataset. The machine learning model may be used to test possible configurations for a planned SAN node based on expected workload and performance requirements. Outputted data may include satisfactory configurations for a planned storage system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021124510A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title USING TELEMETRY DATA FROM DIFFERENT STORAGE SYSTEMS TO PREDICT RESPONSE TIME
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Arnan,%20Ron&rft.date=2021-04-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021124510A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true