Heart Rate Prediction from a Photoplethysmogram
A technology for obtaining a heart rate from a photoplethysmogram (PPG) signal. In one example, an artificial neural network model can be trained to predict a heart rate using a training dataset containing PPG data. The artificial neural network model can include a series of convolutional layers to...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kerman, Sean Humpherys, Jeffrey Christensen, Tanner Hettinger, Chris |
description | A technology for obtaining a heart rate from a photoplethysmogram (PPG) signal. In one example, an artificial neural network model can be trained to predict a heart rate using a training dataset containing PPG data. The artificial neural network model can include a series of convolutional layers to remove artifacts from a PPG signal, a fast Fourier transform (FFT) layer to convert the PPG signal to PPG frequency representations, and a dense layer to decode the PPG frequency representations to heart rate predictions. After training the artificial neural network model, PPG data generated by a pulse oximeter monitor can be obtained, and the PPG data can be input to the artificial neural network model. The artificial neural network model outputs a heart rate prediction, wherein the heart rate prediction represents the heart rate obtained from the PPG signal. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021106241A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021106241A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021106241A13</originalsourceid><addsrcrecordid>eNrjZND3SE0sKlEISixJVQgoSk3JTC7JzM9TSCvKz1VIVAjIyC_JL8hJLcmoLM7NTy9KzOVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoaGBmZGJoaOhsbEqQIAzQwrzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Heart Rate Prediction from a Photoplethysmogram</title><source>esp@cenet</source><creator>Kerman, Sean ; Humpherys, Jeffrey ; Christensen, Tanner ; Hettinger, Chris</creator><creatorcontrib>Kerman, Sean ; Humpherys, Jeffrey ; Christensen, Tanner ; Hettinger, Chris</creatorcontrib><description>A technology for obtaining a heart rate from a photoplethysmogram (PPG) signal. In one example, an artificial neural network model can be trained to predict a heart rate using a training dataset containing PPG data. The artificial neural network model can include a series of convolutional layers to remove artifacts from a PPG signal, a fast Fourier transform (FFT) layer to convert the PPG signal to PPG frequency representations, and a dense layer to decode the PPG frequency representations to heart rate predictions. After training the artificial neural network model, PPG data generated by a pulse oximeter monitor can be obtained, and the PPG data can be input to the artificial neural network model. The artificial neural network model outputs a heart rate prediction, wherein the heart rate prediction represents the heart rate obtained from the PPG signal.</description><language>eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210415&DB=EPODOC&CC=US&NR=2021106241A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210415&DB=EPODOC&CC=US&NR=2021106241A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kerman, Sean</creatorcontrib><creatorcontrib>Humpherys, Jeffrey</creatorcontrib><creatorcontrib>Christensen, Tanner</creatorcontrib><creatorcontrib>Hettinger, Chris</creatorcontrib><title>Heart Rate Prediction from a Photoplethysmogram</title><description>A technology for obtaining a heart rate from a photoplethysmogram (PPG) signal. In one example, an artificial neural network model can be trained to predict a heart rate using a training dataset containing PPG data. The artificial neural network model can include a series of convolutional layers to remove artifacts from a PPG signal, a fast Fourier transform (FFT) layer to convert the PPG signal to PPG frequency representations, and a dense layer to decode the PPG frequency representations to heart rate predictions. After training the artificial neural network model, PPG data generated by a pulse oximeter monitor can be obtained, and the PPG data can be input to the artificial neural network model. The artificial neural network model outputs a heart rate prediction, wherein the heart rate prediction represents the heart rate obtained from the PPG signal.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND3SE0sKlEISixJVQgoSk3JTC7JzM9TSCvKz1VIVAjIyC_JL8hJLcmoLM7NTy9KzOVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoaGBmZGJoaOhsbEqQIAzQwrzA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Kerman, Sean</creator><creator>Humpherys, Jeffrey</creator><creator>Christensen, Tanner</creator><creator>Hettinger, Chris</creator><scope>EVB</scope></search><sort><creationdate>20210415</creationdate><title>Heart Rate Prediction from a Photoplethysmogram</title><author>Kerman, Sean ; Humpherys, Jeffrey ; Christensen, Tanner ; Hettinger, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021106241A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>Kerman, Sean</creatorcontrib><creatorcontrib>Humpherys, Jeffrey</creatorcontrib><creatorcontrib>Christensen, Tanner</creatorcontrib><creatorcontrib>Hettinger, Chris</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kerman, Sean</au><au>Humpherys, Jeffrey</au><au>Christensen, Tanner</au><au>Hettinger, Chris</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Heart Rate Prediction from a Photoplethysmogram</title><date>2021-04-15</date><risdate>2021</risdate><abstract>A technology for obtaining a heart rate from a photoplethysmogram (PPG) signal. In one example, an artificial neural network model can be trained to predict a heart rate using a training dataset containing PPG data. The artificial neural network model can include a series of convolutional layers to remove artifacts from a PPG signal, a fast Fourier transform (FFT) layer to convert the PPG signal to PPG frequency representations, and a dense layer to decode the PPG frequency representations to heart rate predictions. After training the artificial neural network model, PPG data generated by a pulse oximeter monitor can be obtained, and the PPG data can be input to the artificial neural network model. The artificial neural network model outputs a heart rate prediction, wherein the heart rate prediction represents the heart rate obtained from the PPG signal.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021106241A1 |
source | esp@cenet |
subjects | DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE SURGERY |
title | Heart Rate Prediction from a Photoplethysmogram |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kerman,%20Sean&rft.date=2021-04-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021106241A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |