TARGET IDENTIFICATION IN LARGE IMAGE DATA

A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Israel, Steven A, Mccoy, Lisa A, Tanner, Franklin, Zabel, Shane A, Sallee, Philip A, Klein, Jeffrey S, Goldstein, Jonathan, Talamonti, James, Raif, Stephen J
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Israel, Steven A
Mccoy, Lisa A
Tanner, Franklin
Zabel, Shane A
Sallee, Philip A
Klein, Jeffrey S
Goldstein, Jonathan
Talamonti, James
Raif, Stephen J
description A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021097344A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021097344A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021097344A13</originalsourceid><addsrcrecordid>eNrjZNAMcQxydw1R8HRx9QvxdPN0dgzx9PdT8PRT8AFJKHj6OgJJF8cQRx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaW5sYuJoaEycKgCcDST0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><source>esp@cenet</source><creator>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</creator><creatorcontrib>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</creatorcontrib><description>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210401&amp;DB=EPODOC&amp;CC=US&amp;NR=2021097344A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210401&amp;DB=EPODOC&amp;CC=US&amp;NR=2021097344A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Israel, Steven A</creatorcontrib><creatorcontrib>Mccoy, Lisa A</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Zabel, Shane A</creatorcontrib><creatorcontrib>Sallee, Philip A</creatorcontrib><creatorcontrib>Klein, Jeffrey S</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Talamonti, James</creatorcontrib><creatorcontrib>Raif, Stephen J</creatorcontrib><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><description>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAMcQxydw1R8HRx9QvxdPN0dgzx9PdT8PRT8AFJKHj6OgJJF8cQRx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaW5sYuJoaEycKgCcDST0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Israel, Steven A</creator><creator>Mccoy, Lisa A</creator><creator>Tanner, Franklin</creator><creator>Zabel, Shane A</creator><creator>Sallee, Philip A</creator><creator>Klein, Jeffrey S</creator><creator>Goldstein, Jonathan</creator><creator>Talamonti, James</creator><creator>Raif, Stephen J</creator><scope>EVB</scope></search><sort><creationdate>20210401</creationdate><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><author>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021097344A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Israel, Steven A</creatorcontrib><creatorcontrib>Mccoy, Lisa A</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Zabel, Shane A</creatorcontrib><creatorcontrib>Sallee, Philip A</creatorcontrib><creatorcontrib>Klein, Jeffrey S</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Talamonti, James</creatorcontrib><creatorcontrib>Raif, Stephen J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Israel, Steven A</au><au>Mccoy, Lisa A</au><au>Tanner, Franklin</au><au>Zabel, Shane A</au><au>Sallee, Philip A</au><au>Klein, Jeffrey S</au><au>Goldstein, Jonathan</au><au>Talamonti, James</au><au>Raif, Stephen J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><date>2021-04-01</date><risdate>2021</risdate><abstract>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021097344A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title TARGET IDENTIFICATION IN LARGE IMAGE DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Israel,%20Steven%20A&rft.date=2021-04-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021097344A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true