TARGET IDENTIFICATION IN LARGE IMAGE DATA
A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, e...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Israel, Steven A Mccoy, Lisa A Tanner, Franklin Zabel, Shane A Sallee, Philip A Klein, Jeffrey S Goldstein, Jonathan Talamonti, James Raif, Stephen J |
description | A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021097344A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021097344A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021097344A13</originalsourceid><addsrcrecordid>eNrjZNAMcQxydw1R8HRx9QvxdPN0dgzx9PdT8PRT8AFJKHj6OgJJF8cQRx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaW5sYuJoaEycKgCcDST0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><source>esp@cenet</source><creator>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</creator><creatorcontrib>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</creatorcontrib><description>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210401&DB=EPODOC&CC=US&NR=2021097344A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210401&DB=EPODOC&CC=US&NR=2021097344A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Israel, Steven A</creatorcontrib><creatorcontrib>Mccoy, Lisa A</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Zabel, Shane A</creatorcontrib><creatorcontrib>Sallee, Philip A</creatorcontrib><creatorcontrib>Klein, Jeffrey S</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Talamonti, James</creatorcontrib><creatorcontrib>Raif, Stephen J</creatorcontrib><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><description>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAMcQxydw1R8HRx9QvxdPN0dgzx9PdT8PRT8AFJKHj6OgJJF8cQRx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaW5sYuJoaEycKgCcDST0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Israel, Steven A</creator><creator>Mccoy, Lisa A</creator><creator>Tanner, Franklin</creator><creator>Zabel, Shane A</creator><creator>Sallee, Philip A</creator><creator>Klein, Jeffrey S</creator><creator>Goldstein, Jonathan</creator><creator>Talamonti, James</creator><creator>Raif, Stephen J</creator><scope>EVB</scope></search><sort><creationdate>20210401</creationdate><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><author>Israel, Steven A ; Mccoy, Lisa A ; Tanner, Franklin ; Zabel, Shane A ; Sallee, Philip A ; Klein, Jeffrey S ; Goldstein, Jonathan ; Talamonti, James ; Raif, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021097344A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Israel, Steven A</creatorcontrib><creatorcontrib>Mccoy, Lisa A</creatorcontrib><creatorcontrib>Tanner, Franklin</creatorcontrib><creatorcontrib>Zabel, Shane A</creatorcontrib><creatorcontrib>Sallee, Philip A</creatorcontrib><creatorcontrib>Klein, Jeffrey S</creatorcontrib><creatorcontrib>Goldstein, Jonathan</creatorcontrib><creatorcontrib>Talamonti, James</creatorcontrib><creatorcontrib>Raif, Stephen J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Israel, Steven A</au><au>Mccoy, Lisa A</au><au>Tanner, Franklin</au><au>Zabel, Shane A</au><au>Sallee, Philip A</au><au>Klein, Jeffrey S</au><au>Goldstein, Jonathan</au><au>Talamonti, James</au><au>Raif, Stephen J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>TARGET IDENTIFICATION IN LARGE IMAGE DATA</title><date>2021-04-01</date><risdate>2021</risdate><abstract>A machine receives a large image having large image dimensions that exceed memory threshold dimensions. The large image includes metadata. The machine adjusts an orientation and a scaling of the large image based on the metadata. The machine divides the large image into a plurality of image tiles, each image tile having tile dimensions smaller than or equal to the memory threshold dimensions. The machine provides the plurality of image tiles to an artificial neural network. The machine identifies, using the artificial neural network, at least a portion of the target in at least one image tile. The machine identifies the target in the large image based on at least the portion of the target being identified in at least one image tile.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021097344A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING PHYSICS |
title | TARGET IDENTIFICATION IN LARGE IMAGE DATA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A29%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Israel,%20Steven%20A&rft.date=2021-04-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021097344A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |