REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM

The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kishore, Koyalkar Raman, Sumanth, Pachipulusu Lingesh, Rao, Parag Ravindra, Subramanya, Srikanth Olety, Ramegowda, Yogesha Aralakuppe
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Kishore, Koyalkar Raman
Sumanth, Pachipulusu Lingesh
Rao, Parag Ravindra
Subramanya, Srikanth Olety
Ramegowda, Yogesha Aralakuppe
description The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021096547A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021096547A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021096547A13</originalsourceid><addsrcrecordid>eNqNysEKgkAQgGEvHaJ6h4HOgloZHSedzYF1lZ0x8CQS2ylKsPcngh6g0w8f_zIaPaGNlWuCpiWPyo2DxgA6YFd2op7RgsGCLWsPnbC7AEKNRcWOwBJ696UzCpUgZE2MJbbKVwLpRaleR4v7-JjD5tdVtDWkRRWH6TWEeRpv4RneQydZkqXJKT_sj5ju_rs-Vz00Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><source>esp@cenet</source><creator>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</creator><creatorcontrib>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</creatorcontrib><description>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210401&amp;DB=EPODOC&amp;CC=US&amp;NR=2021096547A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210401&amp;DB=EPODOC&amp;CC=US&amp;NR=2021096547A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kishore, Koyalkar Raman</creatorcontrib><creatorcontrib>Sumanth, Pachipulusu Lingesh</creatorcontrib><creatorcontrib>Rao, Parag Ravindra</creatorcontrib><creatorcontrib>Subramanya, Srikanth Olety</creatorcontrib><creatorcontrib>Ramegowda, Yogesha Aralakuppe</creatorcontrib><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><description>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNysEKgkAQgGEvHaJ6h4HOgloZHSedzYF1lZ0x8CQS2ylKsPcngh6g0w8f_zIaPaGNlWuCpiWPyo2DxgA6YFd2op7RgsGCLWsPnbC7AEKNRcWOwBJ696UzCpUgZE2MJbbKVwLpRaleR4v7-JjD5tdVtDWkRRWH6TWEeRpv4RneQydZkqXJKT_sj5ju_rs-Vz00Yg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kishore, Koyalkar Raman</creator><creator>Sumanth, Pachipulusu Lingesh</creator><creator>Rao, Parag Ravindra</creator><creator>Subramanya, Srikanth Olety</creator><creator>Ramegowda, Yogesha Aralakuppe</creator><scope>EVB</scope></search><sort><creationdate>20210401</creationdate><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><author>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021096547A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Kishore, Koyalkar Raman</creatorcontrib><creatorcontrib>Sumanth, Pachipulusu Lingesh</creatorcontrib><creatorcontrib>Rao, Parag Ravindra</creatorcontrib><creatorcontrib>Subramanya, Srikanth Olety</creatorcontrib><creatorcontrib>Ramegowda, Yogesha Aralakuppe</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kishore, Koyalkar Raman</au><au>Sumanth, Pachipulusu Lingesh</au><au>Rao, Parag Ravindra</au><au>Subramanya, Srikanth Olety</au><au>Ramegowda, Yogesha Aralakuppe</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><date>2021-04-01</date><risdate>2021</risdate><abstract>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021096547A1
source esp@cenet
subjects CALCULATING
COMPUTING
CONTROL OR REGULATING SYSTEMS IN GENERAL
CONTROLLING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
FUNCTIONAL ELEMENTS OF SUCH SYSTEMS
MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS
PHYSICS
REGULATING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kishore,%20Koyalkar%20Raman&rft.date=2021-04-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021096547A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true