REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM
The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storag...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kishore, Koyalkar Raman Sumanth, Pachipulusu Lingesh Rao, Parag Ravindra Subramanya, Srikanth Olety Ramegowda, Yogesha Aralakuppe |
description | The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021096547A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021096547A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021096547A13</originalsourceid><addsrcrecordid>eNqNysEKgkAQgGEvHaJ6h4HOgloZHSedzYF1lZ0x8CQS2ylKsPcngh6g0w8f_zIaPaGNlWuCpiWPyo2DxgA6YFd2op7RgsGCLWsPnbC7AEKNRcWOwBJ696UzCpUgZE2MJbbKVwLpRaleR4v7-JjD5tdVtDWkRRWH6TWEeRpv4RneQydZkqXJKT_sj5ju_rs-Vz00Yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><source>esp@cenet</source><creator>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</creator><creatorcontrib>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</creatorcontrib><description>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; CONTROL OR REGULATING SYSTEMS IN GENERAL ; CONTROLLING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS ; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS ; PHYSICS ; REGULATING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210401&DB=EPODOC&CC=US&NR=2021096547A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210401&DB=EPODOC&CC=US&NR=2021096547A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kishore, Koyalkar Raman</creatorcontrib><creatorcontrib>Sumanth, Pachipulusu Lingesh</creatorcontrib><creatorcontrib>Rao, Parag Ravindra</creatorcontrib><creatorcontrib>Subramanya, Srikanth Olety</creatorcontrib><creatorcontrib>Ramegowda, Yogesha Aralakuppe</creatorcontrib><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><description>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>CONTROL OR REGULATING SYSTEMS IN GENERAL</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</subject><subject>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNysEKgkAQgGEvHaJ6h4HOgloZHSedzYF1lZ0x8CQS2ylKsPcngh6g0w8f_zIaPaGNlWuCpiWPyo2DxgA6YFd2op7RgsGCLWsPnbC7AEKNRcWOwBJ696UzCpUgZE2MJbbKVwLpRaleR4v7-JjD5tdVtDWkRRWH6TWEeRpv4RneQydZkqXJKT_sj5ju_rs-Vz00Yg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Kishore, Koyalkar Raman</creator><creator>Sumanth, Pachipulusu Lingesh</creator><creator>Rao, Parag Ravindra</creator><creator>Subramanya, Srikanth Olety</creator><creator>Ramegowda, Yogesha Aralakuppe</creator><scope>EVB</scope></search><sort><creationdate>20210401</creationdate><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><author>Kishore, Koyalkar Raman ; Sumanth, Pachipulusu Lingesh ; Rao, Parag Ravindra ; Subramanya, Srikanth Olety ; Ramegowda, Yogesha Aralakuppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021096547A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>CONTROL OR REGULATING SYSTEMS IN GENERAL</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>FUNCTIONAL ELEMENTS OF SUCH SYSTEMS</topic><topic>MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Kishore, Koyalkar Raman</creatorcontrib><creatorcontrib>Sumanth, Pachipulusu Lingesh</creatorcontrib><creatorcontrib>Rao, Parag Ravindra</creatorcontrib><creatorcontrib>Subramanya, Srikanth Olety</creatorcontrib><creatorcontrib>Ramegowda, Yogesha Aralakuppe</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kishore, Koyalkar Raman</au><au>Sumanth, Pachipulusu Lingesh</au><au>Rao, Parag Ravindra</au><au>Subramanya, Srikanth Olety</au><au>Ramegowda, Yogesha Aralakuppe</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM</title><date>2021-04-01</date><risdate>2021</risdate><abstract>The disclosure provides a method and system of improvement in the real-time operation of a terminal station in an industrial facility using a machine learning-based self-adaptive system comprising obtaining real-time operations data and historical data stored in a local database or at a cloud-storage. The data relates to input parameters of the terminal station. The method includes inputting the input parameter to a machine learning configurable module of the machine learning-based self-adaptive system and analyzing the input parameter using dynamic machine learning models and algorithms to identify patterns to each of the input parameters. The method further includes evaluating the identified pattern against the real-time operations data obtained from the terminal station and predicting at least one output parameter based on the input parameter and the identified pattern against the real-time operations. Based on the prediction, adjusting the output parameter of the real-time operations data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021096547A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING CONTROL OR REGULATING SYSTEMS IN GENERAL CONTROLLING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES FUNCTIONAL ELEMENTS OF SUCH SYSTEMS MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS ORELEMENTS PHYSICS REGULATING SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | REAL-TIME OPERATION OF AN INDUSTRIAL FACILITY USING A MACHINE LEARNING BASED SELF-ADAPTIVE SYSTEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kishore,%20Koyalkar%20Raman&rft.date=2021-04-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021096547A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |