HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION

Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FARRI, Oladimeji Feyisetan, AL HASAN, Sheikh Sadid, LIU, Junyi, LING, Yuan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FARRI, Oladimeji Feyisetan
AL HASAN, Sheikh Sadid
LIU, Junyi
LING, Yuan
description Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021089765A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021089765A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021089765A13</originalsourceid><addsrcrecordid>eNrjZLDw8HQNcgxy9vB0dvRR8HMNDQJTIeH-Qd7BCuGeIR4K7kGOfqE-jkGeUa4uCo4hIa5-IZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyNDAwtLczNTR0Jg4VQA0hCng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><source>esp@cenet</source><creator>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</creator><creatorcontrib>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</creatorcontrib><description>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210325&amp;DB=EPODOC&amp;CC=US&amp;NR=2021089765A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210325&amp;DB=EPODOC&amp;CC=US&amp;NR=2021089765A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FARRI, Oladimeji Feyisetan</creatorcontrib><creatorcontrib>AL HASAN, Sheikh Sadid</creatorcontrib><creatorcontrib>LIU, Junyi</creatorcontrib><creatorcontrib>LING, Yuan</creatorcontrib><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><description>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDw8HQNcgxy9vB0dvRR8HMNDQJTIeH-Qd7BCuGeIR4K7kGOfqE-jkGeUa4uCo4hIa5-IZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyNDAwtLczNTR0Jg4VQA0hCng</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>FARRI, Oladimeji Feyisetan</creator><creator>AL HASAN, Sheikh Sadid</creator><creator>LIU, Junyi</creator><creator>LING, Yuan</creator><scope>EVB</scope></search><sort><creationdate>20210325</creationdate><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><author>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021089765A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FARRI, Oladimeji Feyisetan</creatorcontrib><creatorcontrib>AL HASAN, Sheikh Sadid</creatorcontrib><creatorcontrib>LIU, Junyi</creatorcontrib><creatorcontrib>LING, Yuan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FARRI, Oladimeji Feyisetan</au><au>AL HASAN, Sheikh Sadid</au><au>LIU, Junyi</au><au>LING, Yuan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><date>2021-03-25</date><risdate>2021</risdate><abstract>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021089765A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FARRI,%20Oladimeji%20Feyisetan&rft.date=2021-03-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021089765A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true