HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION
Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical ne...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FARRI, Oladimeji Feyisetan AL HASAN, Sheikh Sadid LIU, Junyi LING, Yuan |
description | Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021089765A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021089765A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021089765A13</originalsourceid><addsrcrecordid>eNrjZLDw8HQNcgxy9vB0dvRR8HMNDQJTIeH-Qd7BCuGeIR4K7kGOfqE-jkGeUa4uCo4hIa5-IZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyNDAwtLczNTR0Jg4VQA0hCng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><source>esp@cenet</source><creator>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</creator><creatorcontrib>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</creatorcontrib><description>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210325&DB=EPODOC&CC=US&NR=2021089765A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210325&DB=EPODOC&CC=US&NR=2021089765A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FARRI, Oladimeji Feyisetan</creatorcontrib><creatorcontrib>AL HASAN, Sheikh Sadid</creatorcontrib><creatorcontrib>LIU, Junyi</creatorcontrib><creatorcontrib>LING, Yuan</creatorcontrib><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><description>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDw8HQNcgxy9vB0dvRR8HMNDQJTIeH-Qd7BCuGeIR4K7kGOfqE-jkGeUa4uCo4hIa5-IZ7-fjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyNDAwtLczNTR0Jg4VQA0hCng</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>FARRI, Oladimeji Feyisetan</creator><creator>AL HASAN, Sheikh Sadid</creator><creator>LIU, Junyi</creator><creator>LING, Yuan</creator><scope>EVB</scope></search><sort><creationdate>20210325</creationdate><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><author>FARRI, Oladimeji Feyisetan ; AL HASAN, Sheikh Sadid ; LIU, Junyi ; LING, Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021089765A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FARRI, Oladimeji Feyisetan</creatorcontrib><creatorcontrib>AL HASAN, Sheikh Sadid</creatorcontrib><creatorcontrib>LIU, Junyi</creatorcontrib><creatorcontrib>LING, Yuan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FARRI, Oladimeji Feyisetan</au><au>AL HASAN, Sheikh Sadid</au><au>LIU, Junyi</au><au>LING, Yuan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION</title><date>2021-03-25</date><risdate>2021</risdate><abstract>Techniques disclosed herein relate to generating and applying a granular attention hierarchical neural network model to classify a document. In various embodiments, data indicative of the document may be obtained (102) and processed (104) into a first layer of two or more layers of a hierarchical network model using a dual granularity attention mechanism to generate first layer output data, wherein the dual granularity attention mechanism weighs some portions of the data indicative of the document more heavily. Some portions of the data indicative of the document are integrated into the hieratical network model during training of the dual granularity attention mechanism. The first layer output data may be processed (106) in the second of two or more layers of the hierarchical network model to generate second layer output data. A classification label can be generated (108) from the second layer output data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021089765A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | HIERARCHICAL NEURAL NETWORKS WITH GRANULARIZED ATTENTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FARRI,%20Oladimeji%20Feyisetan&rft.date=2021-03-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021089765A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |