DATA-DRIVEN ROBOT CONTROL
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific traini...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Cabi, Serkan Scholz, Jonathan Karl Jeong, Rae Chan Novikov, Alexander Reed, Scott Ellison Sushkov, Oleg O Konyushkova, Ksenia Budden, David Denil, Misha Man Ray Gomes de Freitas, Joao Ferdinando Vecerik, Mel Aytar, Yusuf Barker, David Gomez Colmenarejo, Sergio Wang, Ziyu |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021078169A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021078169A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021078169A13</originalsourceid><addsrcrecordid>eNrjZJB0cQxx1HUJ8gxz9VMI8nfyD1Fw9vcLCfL34WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhgbmFoZmlo6GxsSpAgCR5SDy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DATA-DRIVEN ROBOT CONTROL</title><source>esp@cenet</source><creator>Cabi, Serkan ; Scholz, Jonathan Karl ; Jeong, Rae Chan ; Novikov, Alexander ; Reed, Scott Ellison ; Sushkov, Oleg O ; Konyushkova, Ksenia ; Budden, David ; Denil, Misha Man Ray ; Gomes de Freitas, Joao Ferdinando ; Vecerik, Mel ; Aytar, Yusuf ; Barker, David ; Gomez Colmenarejo, Sergio ; Wang, Ziyu</creator><creatorcontrib>Cabi, Serkan ; Scholz, Jonathan Karl ; Jeong, Rae Chan ; Novikov, Alexander ; Reed, Scott Ellison ; Sushkov, Oleg O ; Konyushkova, Ksenia ; Budden, David ; Denil, Misha Man Ray ; Gomes de Freitas, Joao Ferdinando ; Vecerik, Mel ; Aytar, Yusuf ; Barker, David ; Gomez Colmenarejo, Sergio ; Wang, Ziyu</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.</description><language>eng</language><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES ; HAND TOOLS ; MANIPULATORS ; PERFORMING OPERATIONS ; PORTABLE POWER-DRIVEN TOOLS ; TRANSPORTING</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210318&DB=EPODOC&CC=US&NR=2021078169A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210318&DB=EPODOC&CC=US&NR=2021078169A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cabi, Serkan</creatorcontrib><creatorcontrib>Scholz, Jonathan Karl</creatorcontrib><creatorcontrib>Jeong, Rae Chan</creatorcontrib><creatorcontrib>Novikov, Alexander</creatorcontrib><creatorcontrib>Reed, Scott Ellison</creatorcontrib><creatorcontrib>Sushkov, Oleg O</creatorcontrib><creatorcontrib>Konyushkova, Ksenia</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Denil, Misha Man Ray</creatorcontrib><creatorcontrib>Gomes de Freitas, Joao Ferdinando</creatorcontrib><creatorcontrib>Vecerik, Mel</creatorcontrib><creatorcontrib>Aytar, Yusuf</creatorcontrib><creatorcontrib>Barker, David</creatorcontrib><creatorcontrib>Gomez Colmenarejo, Sergio</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><title>DATA-DRIVEN ROBOT CONTROL</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.</description><subject>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</subject><subject>HAND TOOLS</subject><subject>MANIPULATORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PORTABLE POWER-DRIVEN TOOLS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZJB0cQxx1HUJ8gxz9VMI8nfyD1Fw9vcLCfL34WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGhgbmFoZmlo6GxsSpAgCR5SDy</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Cabi, Serkan</creator><creator>Scholz, Jonathan Karl</creator><creator>Jeong, Rae Chan</creator><creator>Novikov, Alexander</creator><creator>Reed, Scott Ellison</creator><creator>Sushkov, Oleg O</creator><creator>Konyushkova, Ksenia</creator><creator>Budden, David</creator><creator>Denil, Misha Man Ray</creator><creator>Gomes de Freitas, Joao Ferdinando</creator><creator>Vecerik, Mel</creator><creator>Aytar, Yusuf</creator><creator>Barker, David</creator><creator>Gomez Colmenarejo, Sergio</creator><creator>Wang, Ziyu</creator><scope>EVB</scope></search><sort><creationdate>20210318</creationdate><title>DATA-DRIVEN ROBOT CONTROL</title><author>Cabi, Serkan ; Scholz, Jonathan Karl ; Jeong, Rae Chan ; Novikov, Alexander ; Reed, Scott Ellison ; Sushkov, Oleg O ; Konyushkova, Ksenia ; Budden, David ; Denil, Misha Man Ray ; Gomes de Freitas, Joao Ferdinando ; Vecerik, Mel ; Aytar, Yusuf ; Barker, David ; Gomez Colmenarejo, Sergio ; Wang, Ziyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021078169A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CHAMBERS PROVIDED WITH MANIPULATION DEVICES</topic><topic>HAND TOOLS</topic><topic>MANIPULATORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PORTABLE POWER-DRIVEN TOOLS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Cabi, Serkan</creatorcontrib><creatorcontrib>Scholz, Jonathan Karl</creatorcontrib><creatorcontrib>Jeong, Rae Chan</creatorcontrib><creatorcontrib>Novikov, Alexander</creatorcontrib><creatorcontrib>Reed, Scott Ellison</creatorcontrib><creatorcontrib>Sushkov, Oleg O</creatorcontrib><creatorcontrib>Konyushkova, Ksenia</creatorcontrib><creatorcontrib>Budden, David</creatorcontrib><creatorcontrib>Denil, Misha Man Ray</creatorcontrib><creatorcontrib>Gomes de Freitas, Joao Ferdinando</creatorcontrib><creatorcontrib>Vecerik, Mel</creatorcontrib><creatorcontrib>Aytar, Yusuf</creatorcontrib><creatorcontrib>Barker, David</creatorcontrib><creatorcontrib>Gomez Colmenarejo, Sergio</creatorcontrib><creatorcontrib>Wang, Ziyu</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cabi, Serkan</au><au>Scholz, Jonathan Karl</au><au>Jeong, Rae Chan</au><au>Novikov, Alexander</au><au>Reed, Scott Ellison</au><au>Sushkov, Oleg O</au><au>Konyushkova, Ksenia</au><au>Budden, David</au><au>Denil, Misha Man Ray</au><au>Gomes de Freitas, Joao Ferdinando</au><au>Vecerik, Mel</au><au>Aytar, Yusuf</au><au>Barker, David</au><au>Gomez Colmenarejo, Sergio</au><au>Wang, Ziyu</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DATA-DRIVEN ROBOT CONTROL</title><date>2021-03-18</date><risdate>2021</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for data-driven robotic control. One of the methods includes maintaining robot experience data; obtaining annotation data; training, on the annotation data, a reward model; generating task-specific training data for the particular task, comprising, for each experience in a second subset of the experiences in the robot experience data: processing the observation in the experience using the trained reward model to generate a reward prediction, and associating the reward prediction with the experience; and training a policy neural network on the task-specific training data for the particular task, wherein the policy neural network is configured to receive a network input comprising an observation and to generate a policy output that defines a control policy for a robot performing the particular task.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021078169A1 |
source | esp@cenet |
subjects | CHAMBERS PROVIDED WITH MANIPULATION DEVICES HAND TOOLS MANIPULATORS PERFORMING OPERATIONS PORTABLE POWER-DRIVEN TOOLS TRANSPORTING |
title | DATA-DRIVEN ROBOT CONTROL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cabi,%20Serkan&rft.date=2021-03-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021078169A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |