NETWORK OPTIMIZATION

A system may receive a cluster prediction requirement. The system may determine a first node conglomerate by sorting a first dataset into a first plurality of nodes. The system may determine a plurality of attributes by sorting a second dataset associated with the cluster prediction requirement. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PARIKH, Ashesh, ARAD, Alon, SACHDEV, Sharad, ASWATHNARAYANA, Suresh, MYHRER, Ragnar-Miguel, RAO, Tejas, INTRILIGATOR, Joshua, HUSAIN, Afzal, ALFIERI, Scott Andrew
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PARIKH, Ashesh
ARAD, Alon
SACHDEV, Sharad
ASWATHNARAYANA, Suresh
MYHRER, Ragnar-Miguel
RAO, Tejas
INTRILIGATOR, Joshua
HUSAIN, Afzal
ALFIERI, Scott Andrew
description A system may receive a cluster prediction requirement. The system may determine a first node conglomerate by sorting a first dataset into a first plurality of nodes. The system may determine a plurality of attributes by sorting a second dataset associated with the cluster prediction requirement. The system may determine a second node conglomerate for each of the plurality of attributes. A node confidence score may be assigned to each of the second plurality of nodes. The system may determine a node graph based on a comparison between the first node conglomerate and the second node conglomerate. The node graph may be iteratively modified based on a node optimization threshold value to generate a harmonized node graph. The node optimization threshold value may be based on a map confidence score allotted to the node graph.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021065031A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021065031A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021065031A13</originalsourceid><addsrcrecordid>eNrjZBDxcw0J9w_yVvAPCPH09YxyDPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoYGZqYGxoaOhsbEqQIAE9kfyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NETWORK OPTIMIZATION</title><source>esp@cenet</source><creator>PARIKH, Ashesh ; ARAD, Alon ; SACHDEV, Sharad ; ASWATHNARAYANA, Suresh ; MYHRER, Ragnar-Miguel ; RAO, Tejas ; INTRILIGATOR, Joshua ; HUSAIN, Afzal ; ALFIERI, Scott Andrew</creator><creatorcontrib>PARIKH, Ashesh ; ARAD, Alon ; SACHDEV, Sharad ; ASWATHNARAYANA, Suresh ; MYHRER, Ragnar-Miguel ; RAO, Tejas ; INTRILIGATOR, Joshua ; HUSAIN, Afzal ; ALFIERI, Scott Andrew</creatorcontrib><description>A system may receive a cluster prediction requirement. The system may determine a first node conglomerate by sorting a first dataset into a first plurality of nodes. The system may determine a plurality of attributes by sorting a second dataset associated with the cluster prediction requirement. The system may determine a second node conglomerate for each of the plurality of attributes. A node confidence score may be assigned to each of the second plurality of nodes. The system may determine a node graph based on a comparison between the first node conglomerate and the second node conglomerate. The node graph may be iteratively modified based on a node optimization threshold value to generate a harmonized node graph. The node optimization threshold value may be based on a map confidence score allotted to the node graph.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021065031A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021065031A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PARIKH, Ashesh</creatorcontrib><creatorcontrib>ARAD, Alon</creatorcontrib><creatorcontrib>SACHDEV, Sharad</creatorcontrib><creatorcontrib>ASWATHNARAYANA, Suresh</creatorcontrib><creatorcontrib>MYHRER, Ragnar-Miguel</creatorcontrib><creatorcontrib>RAO, Tejas</creatorcontrib><creatorcontrib>INTRILIGATOR, Joshua</creatorcontrib><creatorcontrib>HUSAIN, Afzal</creatorcontrib><creatorcontrib>ALFIERI, Scott Andrew</creatorcontrib><title>NETWORK OPTIMIZATION</title><description>A system may receive a cluster prediction requirement. The system may determine a first node conglomerate by sorting a first dataset into a first plurality of nodes. The system may determine a plurality of attributes by sorting a second dataset associated with the cluster prediction requirement. The system may determine a second node conglomerate for each of the plurality of attributes. A node confidence score may be assigned to each of the second plurality of nodes. The system may determine a node graph based on a comparison between the first node conglomerate and the second node conglomerate. The node graph may be iteratively modified based on a node optimization threshold value to generate a harmonized node graph. The node optimization threshold value may be based on a map confidence score allotted to the node graph.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBDxcw0J9w_yVvAPCPH09YxyDPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRoYGZqYGxoaOhsbEqQIAE9kfyA</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>PARIKH, Ashesh</creator><creator>ARAD, Alon</creator><creator>SACHDEV, Sharad</creator><creator>ASWATHNARAYANA, Suresh</creator><creator>MYHRER, Ragnar-Miguel</creator><creator>RAO, Tejas</creator><creator>INTRILIGATOR, Joshua</creator><creator>HUSAIN, Afzal</creator><creator>ALFIERI, Scott Andrew</creator><scope>EVB</scope></search><sort><creationdate>20210304</creationdate><title>NETWORK OPTIMIZATION</title><author>PARIKH, Ashesh ; ARAD, Alon ; SACHDEV, Sharad ; ASWATHNARAYANA, Suresh ; MYHRER, Ragnar-Miguel ; RAO, Tejas ; INTRILIGATOR, Joshua ; HUSAIN, Afzal ; ALFIERI, Scott Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021065031A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PARIKH, Ashesh</creatorcontrib><creatorcontrib>ARAD, Alon</creatorcontrib><creatorcontrib>SACHDEV, Sharad</creatorcontrib><creatorcontrib>ASWATHNARAYANA, Suresh</creatorcontrib><creatorcontrib>MYHRER, Ragnar-Miguel</creatorcontrib><creatorcontrib>RAO, Tejas</creatorcontrib><creatorcontrib>INTRILIGATOR, Joshua</creatorcontrib><creatorcontrib>HUSAIN, Afzal</creatorcontrib><creatorcontrib>ALFIERI, Scott Andrew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PARIKH, Ashesh</au><au>ARAD, Alon</au><au>SACHDEV, Sharad</au><au>ASWATHNARAYANA, Suresh</au><au>MYHRER, Ragnar-Miguel</au><au>RAO, Tejas</au><au>INTRILIGATOR, Joshua</au><au>HUSAIN, Afzal</au><au>ALFIERI, Scott Andrew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NETWORK OPTIMIZATION</title><date>2021-03-04</date><risdate>2021</risdate><abstract>A system may receive a cluster prediction requirement. The system may determine a first node conglomerate by sorting a first dataset into a first plurality of nodes. The system may determine a plurality of attributes by sorting a second dataset associated with the cluster prediction requirement. The system may determine a second node conglomerate for each of the plurality of attributes. A node confidence score may be assigned to each of the second plurality of nodes. The system may determine a node graph based on a comparison between the first node conglomerate and the second node conglomerate. The node graph may be iteratively modified based on a node optimization threshold value to generate a harmonized node graph. The node optimization threshold value may be based on a map confidence score allotted to the node graph.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021065031A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title NETWORK OPTIMIZATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PARIKH,%20Ashesh&rft.date=2021-03-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021065031A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true