PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS

This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NORI, Aditya Vithal, TOPLE, Shruti Shrikant, SHARMA, Amit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NORI, Aditya Vithal
TOPLE, Shruti Shrikant
SHARMA, Amit
description This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that have a causal relationship with the outcome. The machine learning model may learn a function that predicts an outcome based on the training data and the causal relationship data. A predefined privacy guarantee value may be received. An amount of noise may be added to the machine learning model to make a privacy guarantee value of the machine learning model equivalent to or stronger than the predefined privacy guarantee value. The amount of noise may be added at a parameter level of the machine learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021064760A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021064760A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021064760A13</originalsourceid><addsrcrecordid>eNrjZDAPCPIPcXUO8fRzV_B1dPbw9HNV8HF1DPIDC_i7uPoEK7gF-fsqBAR5hjk6Ryo4hoQ4OnsH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjQwMzE3MzA0dDY-JUAQDnqykv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS</title><source>esp@cenet</source><creator>NORI, Aditya Vithal ; TOPLE, Shruti Shrikant ; SHARMA, Amit</creator><creatorcontrib>NORI, Aditya Vithal ; TOPLE, Shruti Shrikant ; SHARMA, Amit</creatorcontrib><description>This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that have a causal relationship with the outcome. The machine learning model may learn a function that predicts an outcome based on the training data and the causal relationship data. A predefined privacy guarantee value may be received. An amount of noise may be added to the machine learning model to make a privacy guarantee value of the machine learning model equivalent to or stronger than the predefined privacy guarantee value. The amount of noise may be added at a parameter level of the machine learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021064760A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210304&amp;DB=EPODOC&amp;CC=US&amp;NR=2021064760A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TOPLE, Shruti Shrikant</creatorcontrib><creatorcontrib>SHARMA, Amit</creatorcontrib><title>PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS</title><description>This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that have a causal relationship with the outcome. The machine learning model may learn a function that predicts an outcome based on the training data and the causal relationship data. A predefined privacy guarantee value may be received. An amount of noise may be added to the machine learning model to make a privacy guarantee value of the machine learning model equivalent to or stronger than the predefined privacy guarantee value. The amount of noise may be added at a parameter level of the machine learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAPCPIPcXUO8fRzV_B1dPbw9HNV8HF1DPIDC_i7uPoEK7gF-fsqBAR5hjk6Ryo4hoQ4OnsH8zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwMjQwMzE3MzA0dDY-JUAQDnqykv</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>NORI, Aditya Vithal</creator><creator>TOPLE, Shruti Shrikant</creator><creator>SHARMA, Amit</creator><scope>EVB</scope></search><sort><creationdate>20210304</creationdate><title>PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS</title><author>NORI, Aditya Vithal ; TOPLE, Shruti Shrikant ; SHARMA, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021064760A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TOPLE, Shruti Shrikant</creatorcontrib><creatorcontrib>SHARMA, Amit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NORI, Aditya Vithal</au><au>TOPLE, Shruti Shrikant</au><au>SHARMA, Amit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS</title><date>2021-03-04</date><risdate>2021</risdate><abstract>This disclosure describes methods and systems for protecting machine learning models against privacy attacks. A machine learning model may be trained using a set of training data and causal relationship data. The causal relationship data may describe a subset of features in the training data that have a causal relationship with the outcome. The machine learning model may learn a function that predicts an outcome based on the training data and the causal relationship data. A predefined privacy guarantee value may be received. An amount of noise may be added to the machine learning model to make a privacy guarantee value of the machine learning model equivalent to or stronger than the predefined privacy guarantee value. The amount of noise may be added at a parameter level of the machine learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021064760A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title PROTECTING MACHINE LEARNING MODELS FROM PRIVACY ATTACKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NORI,%20Aditya%20Vithal&rft.date=2021-03-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021064760A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true