CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION

Embodiments described herein provide dynamic thresholds for alerting users of anomalous resource usage of computing resources. The dynamic thresholds are based on the historical behavior of compute metrics (or a time series obtained therefor) associated with the computing resources and a detected se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lemberg, Rachel, Ungar, Adam, Lavi, Yaniv, Fettaya, Raphael Haim, Bank, Dor
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lemberg, Rachel
Ungar, Adam
Lavi, Yaniv
Fettaya, Raphael Haim
Bank, Dor
description Embodiments described herein provide dynamic thresholds for alerting users of anomalous resource usage of computing resources. The dynamic thresholds are based on the historical behavior of compute metrics (or a time series obtained therefor) associated with the computing resources and a detected seasonality in that time series. Based on characteristics of the time series, a model for generating dynamic thresholds is determined. The dynamic thresholds track the detected seasonality of the compute metrics. As utilization of the computing resources continue, the determined thresholds are applied to the compute metrics. If the determined thresholds are exceeded, an alert indicating an anomalous resource usage is provided to a user. The dynamic threshold may be adjusted (e.g., tightened or relaxed) based on a confidence level of the detected seasonality. This advantageously reduces the number of false alerts.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021026698A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021026698A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021026698A13</originalsourceid><addsrcrecordid>eNqNzM0KgkAUQGE3LaJ6hwutBTWQXN5mrjrgzJX5gVqJxbSKEuz9yaAHaHU2H2edXAWbWkkyggD73vJZafSKTXpCRxLkxaBWAnxrybXcSQc1W0DDGjsODgTrPnhlGlgAB7t8gsOGQJIn8T1tk9V9fMxx9-sm2dfkRZvG6TXEeRpv8RnfQ3BFVuRZUZbVEfPDf-oDAKA1dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION</title><source>esp@cenet</source><creator>Lemberg, Rachel ; Ungar, Adam ; Lavi, Yaniv ; Fettaya, Raphael Haim ; Bank, Dor</creator><creatorcontrib>Lemberg, Rachel ; Ungar, Adam ; Lavi, Yaniv ; Fettaya, Raphael Haim ; Bank, Dor</creatorcontrib><description>Embodiments described herein provide dynamic thresholds for alerting users of anomalous resource usage of computing resources. The dynamic thresholds are based on the historical behavior of compute metrics (or a time series obtained therefor) associated with the computing resources and a detected seasonality in that time series. Based on characteristics of the time series, a model for generating dynamic thresholds is determined. The dynamic thresholds track the detected seasonality of the compute metrics. As utilization of the computing resources continue, the determined thresholds are applied to the compute metrics. If the determined thresholds are exceeded, an alert indicating an anomalous resource usage is provided to a user. The dynamic threshold may be adjusted (e.g., tightened or relaxed) based on a confidence level of the detected seasonality. This advantageously reduces the number of false alerts.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210128&amp;DB=EPODOC&amp;CC=US&amp;NR=2021026698A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210128&amp;DB=EPODOC&amp;CC=US&amp;NR=2021026698A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lemberg, Rachel</creatorcontrib><creatorcontrib>Ungar, Adam</creatorcontrib><creatorcontrib>Lavi, Yaniv</creatorcontrib><creatorcontrib>Fettaya, Raphael Haim</creatorcontrib><creatorcontrib>Bank, Dor</creatorcontrib><title>CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION</title><description>Embodiments described herein provide dynamic thresholds for alerting users of anomalous resource usage of computing resources. The dynamic thresholds are based on the historical behavior of compute metrics (or a time series obtained therefor) associated with the computing resources and a detected seasonality in that time series. Based on characteristics of the time series, a model for generating dynamic thresholds is determined. The dynamic thresholds track the detected seasonality of the compute metrics. As utilization of the computing resources continue, the determined thresholds are applied to the compute metrics. If the determined thresholds are exceeded, an alert indicating an anomalous resource usage is provided to a user. The dynamic threshold may be adjusted (e.g., tightened or relaxed) based on a confidence level of the detected seasonality. This advantageously reduces the number of false alerts.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzM0KgkAUQGE3LaJ6hwutBTWQXN5mrjrgzJX5gVqJxbSKEuz9yaAHaHU2H2edXAWbWkkyggD73vJZafSKTXpCRxLkxaBWAnxrybXcSQc1W0DDGjsODgTrPnhlGlgAB7t8gsOGQJIn8T1tk9V9fMxx9-sm2dfkRZvG6TXEeRpv8RnfQ3BFVuRZUZbVEfPDf-oDAKA1dw</recordid><startdate>20210128</startdate><enddate>20210128</enddate><creator>Lemberg, Rachel</creator><creator>Ungar, Adam</creator><creator>Lavi, Yaniv</creator><creator>Fettaya, Raphael Haim</creator><creator>Bank, Dor</creator><scope>EVB</scope></search><sort><creationdate>20210128</creationdate><title>CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION</title><author>Lemberg, Rachel ; Ungar, Adam ; Lavi, Yaniv ; Fettaya, Raphael Haim ; Bank, Dor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021026698A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lemberg, Rachel</creatorcontrib><creatorcontrib>Ungar, Adam</creatorcontrib><creatorcontrib>Lavi, Yaniv</creatorcontrib><creatorcontrib>Fettaya, Raphael Haim</creatorcontrib><creatorcontrib>Bank, Dor</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lemberg, Rachel</au><au>Ungar, Adam</au><au>Lavi, Yaniv</au><au>Fettaya, Raphael Haim</au><au>Bank, Dor</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION</title><date>2021-01-28</date><risdate>2021</risdate><abstract>Embodiments described herein provide dynamic thresholds for alerting users of anomalous resource usage of computing resources. The dynamic thresholds are based on the historical behavior of compute metrics (or a time series obtained therefor) associated with the computing resources and a detected seasonality in that time series. Based on characteristics of the time series, a model for generating dynamic thresholds is determined. The dynamic thresholds track the detected seasonality of the compute metrics. As utilization of the computing resources continue, the determined thresholds are applied to the compute metrics. If the determined thresholds are exceeded, an alert indicating an anomalous resource usage is provided to a user. The dynamic threshold may be adjusted (e.g., tightened or relaxed) based on a confidence level of the detected seasonality. This advantageously reduces the number of false alerts.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021026698A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title CONFIDENCE APPROXIMATION-BASED DYNAMIC THRESHOLDS FOR ANOMALOUS COMPUTING RESOURCE USAGE DETECTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A31%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lemberg,%20Rachel&rft.date=2021-01-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021026698A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true