PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS

A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Adetiloye, Taiwo O
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Adetiloye, Taiwo O
description A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021020036A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021020036A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021020036A13</originalsourceid><addsrcrecordid>eNrjZPAICHJ18XQO8fRzVwj28A8K0Q1xDfJVCAlydHPzdFZw8_EPV3D293N3DQ7x9PdTAKLQICdHPwVf_xD_oHDHSAU_15Bw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgZGBgbOZoaEycKgDvNi4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><source>esp@cenet</source><creator>Adetiloye, Taiwo O</creator><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><description>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210121&amp;DB=EPODOC&amp;CC=US&amp;NR=2021020036A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210121&amp;DB=EPODOC&amp;CC=US&amp;NR=2021020036A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><description>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAICHJ18XQO8fRzVwj28A8K0Q1xDfJVCAlydHPzdFZw8_EPV3D293N3DQ7x9PdTAKLQICdHPwVf_xD_oHDHSAU_15Bw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgZGBgbOZoaEycKgDvNi4l</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Adetiloye, Taiwo O</creator><scope>EVB</scope></search><sort><creationdate>20210121</creationdate><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><author>Adetiloye, Taiwo O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021020036A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adetiloye, Taiwo O</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><date>2021-01-21</date><risdate>2021</risdate><abstract>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2021020036A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
SIGNALLING
TRAFFIC CONTROL SYSTEMS
title PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Adetiloye,%20Taiwo%20O&rft.date=2021-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021020036A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true