PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS
A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine l...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Adetiloye, Taiwo O |
description | A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021020036A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021020036A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021020036A13</originalsourceid><addsrcrecordid>eNrjZPAICHJ18XQO8fRzVwj28A8K0Q1xDfJVCAlydHPzdFZw8_EPV3D293N3DQ7x9PdTAKLQICdHPwVf_xD_oHDHSAU_15Bw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgZGBgbOZoaEycKgDvNi4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><source>esp@cenet</source><creator>Adetiloye, Taiwo O</creator><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><description>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210121&DB=EPODOC&CC=US&NR=2021020036A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210121&DB=EPODOC&CC=US&NR=2021020036A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><description>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAICHJ18XQO8fRzVwj28A8K0Q1xDfJVCAlydHPzdFZw8_EPV3D293N3DQ7x9PdTAKLQICdHPwVf_xD_oHDHSAU_15Bw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgZGBgbOZoaEycKgDvNi4l</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Adetiloye, Taiwo O</creator><scope>EVB</scope></search><sort><creationdate>20210121</creationdate><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><author>Adetiloye, Taiwo O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021020036A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>Adetiloye, Taiwo O</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adetiloye, Taiwo O</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS</title><date>2021-01-21</date><risdate>2021</risdate><abstract>A system and method for the prediction of vehicle traffic congestion on a given roadway within a region. In particular, the computer implemented method of the present disclosure utilize real time traffic images from traffic cameras for the input of data and utilizes computer processing and machine learning to model a predictive level of congestion within a category of low congestion, medium congestion, or high congestion. By implementing machine learning in the comparison of exemplary images and administrator review, the computer processing system and method steps can predict a more efficient real time congestion prediction over time.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021020036A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS SIGNALLING TRAFFIC CONTROL SYSTEMS |
title | PREDICTING SHORT-TERM TRAFFIC FLOW CONGESTION ON URBAN MOTORWAY NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T19%3A55%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Adetiloye,%20Taiwo%20O&rft.date=2021-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021020036A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |