ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representati...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Parmar, Niki J Vaswani, Ashish Teku Gomez, Aidan Nicholas Kaiser, Lukasz Mieczyslaw Polosukhin, Illia Shazeer, Noam M Jones, Llion Owen Uszkoreit, Jakob D |
description | Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2021019624A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2021019624A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2021019624A13</originalsourceid><addsrcrecordid>eNrjZDB1DAlx9Qvx9PfTdXIMdnVRCHYNDHX1c3ZVCAly9At2CXUGySn4uYYGOfoAqZBw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaGlmZOJoaEycKgDAASkD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS</title><source>esp@cenet</source><creator>Parmar, Niki J ; Vaswani, Ashish Teku ; Gomez, Aidan Nicholas ; Kaiser, Lukasz Mieczyslaw ; Polosukhin, Illia ; Shazeer, Noam M ; Jones, Llion Owen ; Uszkoreit, Jakob D</creator><creatorcontrib>Parmar, Niki J ; Vaswani, Ashish Teku ; Gomez, Aidan Nicholas ; Kaiser, Lukasz Mieczyslaw ; Polosukhin, Illia ; Shazeer, Noam M ; Jones, Llion Owen ; Uszkoreit, Jakob D</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210121&DB=EPODOC&CC=US&NR=2021019624A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20210121&DB=EPODOC&CC=US&NR=2021019624A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Parmar, Niki J</creatorcontrib><creatorcontrib>Vaswani, Ashish Teku</creatorcontrib><creatorcontrib>Gomez, Aidan Nicholas</creatorcontrib><creatorcontrib>Kaiser, Lukasz Mieczyslaw</creatorcontrib><creatorcontrib>Polosukhin, Illia</creatorcontrib><creatorcontrib>Shazeer, Noam M</creatorcontrib><creatorcontrib>Jones, Llion Owen</creatorcontrib><creatorcontrib>Uszkoreit, Jakob D</creatorcontrib><title>ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS</title><description>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1DAlx9Qvx9PfTdXIMdnVRCHYNDHX1c3ZVCAly9At2CXUGySn4uYYGOfoAqZBw_yDvYB4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGhgaGlmZOJoaEycKgDAASkD</recordid><startdate>20210121</startdate><enddate>20210121</enddate><creator>Parmar, Niki J</creator><creator>Vaswani, Ashish Teku</creator><creator>Gomez, Aidan Nicholas</creator><creator>Kaiser, Lukasz Mieczyslaw</creator><creator>Polosukhin, Illia</creator><creator>Shazeer, Noam M</creator><creator>Jones, Llion Owen</creator><creator>Uszkoreit, Jakob D</creator><scope>EVB</scope></search><sort><creationdate>20210121</creationdate><title>ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS</title><author>Parmar, Niki J ; Vaswani, Ashish Teku ; Gomez, Aidan Nicholas ; Kaiser, Lukasz Mieczyslaw ; Polosukhin, Illia ; Shazeer, Noam M ; Jones, Llion Owen ; Uszkoreit, Jakob D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2021019624A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Parmar, Niki J</creatorcontrib><creatorcontrib>Vaswani, Ashish Teku</creatorcontrib><creatorcontrib>Gomez, Aidan Nicholas</creatorcontrib><creatorcontrib>Kaiser, Lukasz Mieczyslaw</creatorcontrib><creatorcontrib>Polosukhin, Illia</creatorcontrib><creatorcontrib>Shazeer, Noam M</creatorcontrib><creatorcontrib>Jones, Llion Owen</creatorcontrib><creatorcontrib>Uszkoreit, Jakob D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parmar, Niki J</au><au>Vaswani, Ashish Teku</au><au>Gomez, Aidan Nicholas</au><au>Kaiser, Lukasz Mieczyslaw</au><au>Polosukhin, Illia</au><au>Shazeer, Noam M</au><au>Jones, Llion Owen</au><au>Uszkoreit, Jakob D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS</title><date>2021-01-21</date><risdate>2021</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2021019624A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T00%3A04%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Parmar,%20Niki%20J&rft.date=2021-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2021019624A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |