SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY
Implementations provide cold spray additive manufacturing ("CSAM") with gas recovery in situ in an open environment without requiring part disassembly and removal to a repair facility. Recapturing and reusing gas in an open environment reduces costs, rendering CSAM more commercially viable...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Zamorano Senderos, Bruno Nicholas, Michael Young, Kenneth |
description | Implementations provide cold spray additive manufacturing ("CSAM") with gas recovery in situ in an open environment without requiring part disassembly and removal to a repair facility. Recapturing and reusing gas in an open environment reduces costs, rendering CSAM more commercially viable and efficient, and avoids risk of new damage to parts from contemporary pre-existing CSAM processes. A gas recovery nozzle attaches to a supersonic nozzle and sends used gas to a gas recovery sub-system by capturing gas that is deflected on impact with the part during CSAM. Captured gas is stored for reuse. A flexible coupling controls distance from the gas recovery nozzle to a part substrate to prevent (1) nozzle clogging; (2) stationary shock wave interference with gas flow; and (3) gas flow misdirection. The gas recovery nozzle also suppresses disruptive supersonic sounds. Implementations enable capture for later reuse of supersonically-propelled gas during in-situ CSAM in open environments. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020407855A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020407855A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020407855A13</originalsourceid><addsrcrecordid>eNqNi0sKwjAUALNxIeodHrgWarXU7SOfJmCSkpdUuipF4kq0UO-PIh7A1TAws2Qd9RSlJUAnwMqovSBQPgD3ZwHUBuwBhTDRdBIsuqSQxxSMa75HkC2aABcTNTRIH-e-k6Ffs8VtvM958-OKbZWMXO_y9BzyPI3X_MivIVFZlMWxqE9VhfvDf9UbVIIxpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY</title><source>esp@cenet</source><creator>Zamorano Senderos, Bruno ; Nicholas, Michael ; Young, Kenneth</creator><creatorcontrib>Zamorano Senderos, Bruno ; Nicholas, Michael ; Young, Kenneth</creatorcontrib><description>Implementations provide cold spray additive manufacturing ("CSAM") with gas recovery in situ in an open environment without requiring part disassembly and removal to a repair facility. Recapturing and reusing gas in an open environment reduces costs, rendering CSAM more commercially viable and efficient, and avoids risk of new damage to parts from contemporary pre-existing CSAM processes. A gas recovery nozzle attaches to a supersonic nozzle and sends used gas to a gas recovery sub-system by capturing gas that is deflected on impact with the part during CSAM. Captured gas is stored for reuse. A flexible coupling controls distance from the gas recovery nozzle to a part substrate to prevent (1) nozzle clogging; (2) stationary shock wave interference with gas flow; and (3) gas flow misdirection. The gas recovery nozzle also suppresses disruptive supersonic sounds. Implementations enable capture for later reuse of supersonically-propelled gas during in-situ CSAM in open environments.</description><language>eng</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PERFORMING OPERATIONS ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201231&DB=EPODOC&CC=US&NR=2020407855A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201231&DB=EPODOC&CC=US&NR=2020407855A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Zamorano Senderos, Bruno</creatorcontrib><creatorcontrib>Nicholas, Michael</creatorcontrib><creatorcontrib>Young, Kenneth</creatorcontrib><title>SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY</title><description>Implementations provide cold spray additive manufacturing ("CSAM") with gas recovery in situ in an open environment without requiring part disassembly and removal to a repair facility. Recapturing and reusing gas in an open environment reduces costs, rendering CSAM more commercially viable and efficient, and avoids risk of new damage to parts from contemporary pre-existing CSAM processes. A gas recovery nozzle attaches to a supersonic nozzle and sends used gas to a gas recovery sub-system by capturing gas that is deflected on impact with the part during CSAM. Captured gas is stored for reuse. A flexible coupling controls distance from the gas recovery nozzle to a part substrate to prevent (1) nozzle clogging; (2) stationary shock wave interference with gas flow; and (3) gas flow misdirection. The gas recovery nozzle also suppresses disruptive supersonic sounds. Implementations enable capture for later reuse of supersonically-propelled gas during in-situ CSAM in open environments.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PERFORMING OPERATIONS</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0sKwjAUALNxIeodHrgWarXU7SOfJmCSkpdUuipF4kq0UO-PIh7A1TAws2Qd9RSlJUAnwMqovSBQPgD3ZwHUBuwBhTDRdBIsuqSQxxSMa75HkC2aABcTNTRIH-e-k6Ffs8VtvM958-OKbZWMXO_y9BzyPI3X_MivIVFZlMWxqE9VhfvDf9UbVIIxpA</recordid><startdate>20201231</startdate><enddate>20201231</enddate><creator>Zamorano Senderos, Bruno</creator><creator>Nicholas, Michael</creator><creator>Young, Kenneth</creator><scope>EVB</scope></search><sort><creationdate>20201231</creationdate><title>SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY</title><author>Zamorano Senderos, Bruno ; Nicholas, Michael ; Young, Kenneth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020407855A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PERFORMING OPERATIONS</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Zamorano Senderos, Bruno</creatorcontrib><creatorcontrib>Nicholas, Michael</creatorcontrib><creatorcontrib>Young, Kenneth</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zamorano Senderos, Bruno</au><au>Nicholas, Michael</au><au>Young, Kenneth</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY</title><date>2020-12-31</date><risdate>2020</risdate><abstract>Implementations provide cold spray additive manufacturing ("CSAM") with gas recovery in situ in an open environment without requiring part disassembly and removal to a repair facility. Recapturing and reusing gas in an open environment reduces costs, rendering CSAM more commercially viable and efficient, and avoids risk of new damage to parts from contemporary pre-existing CSAM processes. A gas recovery nozzle attaches to a supersonic nozzle and sends used gas to a gas recovery sub-system by capturing gas that is deflected on impact with the part during CSAM. Captured gas is stored for reuse. A flexible coupling controls distance from the gas recovery nozzle to a part substrate to prevent (1) nozzle clogging; (2) stationary shock wave interference with gas flow; and (3) gas flow misdirection. The gas recovery nozzle also suppresses disruptive supersonic sounds. Implementations enable capture for later reuse of supersonically-propelled gas during in-situ CSAM in open environments.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020407855A1 |
source | esp@cenet |
subjects | ADDITIVE MANUFACTURING TECHNOLOGY ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PERFORMING OPERATIONS SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | SYSTEMS AND METHODS FOR COLD SPRAY ADDITIVE MANUFACTURING AND REPAIR WITH GAS RECOVERY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Zamorano%20Senderos,%20Bruno&rft.date=2020-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020407855A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |