MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM

There is provided a model learning technique for learning a model which performs classification into three values by model learning using an AUC optimization criterion. A model learning unit is included which learns a parameter ψ{circumflex over ( )} of a model by using a learning data set based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KOIZUMI, Yuma, HARADA, Noboru, KAWACHI, Yuta
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KOIZUMI, Yuma
HARADA, Noboru
KAWACHI, Yuta
description There is provided a model learning technique for learning a model which performs classification into three values by model learning using an AUC optimization criterion. A model learning unit is included which learns a parameter ψ{circumflex over ( )} of a model by using a learning data set based on a criterion which uses a predetermined AUC value, the learning data set being defined using normal data generated from sound observed in a normal state and abnormal data generated from sound observed in an abnormal state, and the AUC value is defined from a difference between an abnormality degree of the normal data and an abnormality degree of the abnormal data using a two-stage step function T(x).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020401943A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020401943A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020401943A13</originalsourceid><addsrcrecordid>eNrjZLDx9Xdx9VHwcXUM8vP0c1dwDAhwDHIMCQ3WUUCT8XUN8fB30VFw9HNRCAjydw9y9OVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRgYmBoaWJsaOhsbEqQIAhfUqIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM</title><source>esp@cenet</source><creator>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta</creator><creatorcontrib>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta</creatorcontrib><description>There is provided a model learning technique for learning a model which performs classification into three values by model learning using an AUC optimization criterion. A model learning unit is included which learns a parameter ψ{circumflex over ( )} of a model by using a learning data set based on a criterion which uses a predetermined AUC value, the learning data set being defined using normal data generated from sound observed in a normal state and abnormal data generated from sound observed in an abnormal state, and the AUC value is defined from a difference between an abnormality degree of the normal data and an abnormality degree of the abnormal data using a two-stage step function T(x).</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201224&amp;DB=EPODOC&amp;CC=US&amp;NR=2020401943A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201224&amp;DB=EPODOC&amp;CC=US&amp;NR=2020401943A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KOIZUMI, Yuma</creatorcontrib><creatorcontrib>HARADA, Noboru</creatorcontrib><creatorcontrib>KAWACHI, Yuta</creatorcontrib><title>MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM</title><description>There is provided a model learning technique for learning a model which performs classification into three values by model learning using an AUC optimization criterion. A model learning unit is included which learns a parameter ψ{circumflex over ( )} of a model by using a learning data set based on a criterion which uses a predetermined AUC value, the learning data set being defined using normal data generated from sound observed in a normal state and abnormal data generated from sound observed in an abnormal state, and the AUC value is defined from a difference between an abnormality degree of the normal data and an abnormality degree of the abnormal data using a two-stage step function T(x).</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDx9Xdx9VHwcXUM8vP0c1dwDAhwDHIMCQ3WUUCT8XUN8fB30VFw9HNRCAjydw9y9OVhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGRgYmBoaWJsaOhsbEqQIAhfUqIA</recordid><startdate>20201224</startdate><enddate>20201224</enddate><creator>KOIZUMI, Yuma</creator><creator>HARADA, Noboru</creator><creator>KAWACHI, Yuta</creator><scope>EVB</scope></search><sort><creationdate>20201224</creationdate><title>MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM</title><author>KOIZUMI, Yuma ; HARADA, Noboru ; KAWACHI, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020401943A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>KOIZUMI, Yuma</creatorcontrib><creatorcontrib>HARADA, Noboru</creatorcontrib><creatorcontrib>KAWACHI, Yuta</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KOIZUMI, Yuma</au><au>HARADA, Noboru</au><au>KAWACHI, Yuta</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM</title><date>2020-12-24</date><risdate>2020</risdate><abstract>There is provided a model learning technique for learning a model which performs classification into three values by model learning using an AUC optimization criterion. A model learning unit is included which learns a parameter ψ{circumflex over ( )} of a model by using a learning data set based on a criterion which uses a predetermined AUC value, the learning data set being defined using normal data generated from sound observed in a normal state and abnormal data generated from sound observed in an abnormal state, and the AUC value is defined from a difference between an abnormality degree of the normal data and an abnormality degree of the abnormal data using a two-stage step function T(x).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020401943A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title MODEL LEARNING APPARATUS, MODEL LEARNING METHOD, AND PROGRAM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KOIZUMI,%20Yuma&rft.date=2020-12-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020401943A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true