DEEP LEARNING SURROGATE FOR TURBULENT FLOW

The example embodiments are directed to a system and method for predicting a flow about an object through the use of a predictive model instead of a machine simulation. Traditional CFD simulations can take hours, even days. The example embodiments provide a predictive model that can predict a CFD fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: EDGAR, Marc, REIMANN, Johan, BARR, Brian Chandler
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator EDGAR, Marc
REIMANN, Johan
BARR, Brian Chandler
description The example embodiments are directed to a system and method for predicting a flow about an object through the use of a predictive model instead of a machine simulation. Traditional CFD simulations can take hours, even days. The example embodiments provide a predictive model that can predict a CFD flow in seconds which greatly improves design time. In one example, the method may include receiving input data comprising shape parameters of a geometric object and flow parameters associated with the geometric object, predicting, via execution of a predictive model, a computational fluid dynamic (CFD) flow about the geometric object based on the shape parameters and the flow parameters included in the input data, and outputting one or more attributes of the predicted CFD flow about the geometric object via a display device.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020387579A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020387579A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020387579A13</originalsourceid><addsrcrecordid>eNrjZNBycXUNUPBxdQzy8_RzVwgODQryd3cMcVVw8w9SCAkNcgr1cfULUXDz8Q_nYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGxhbmpuaWjobGxKkCAPA0Jck</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEEP LEARNING SURROGATE FOR TURBULENT FLOW</title><source>esp@cenet</source><creator>EDGAR, Marc ; REIMANN, Johan ; BARR, Brian Chandler</creator><creatorcontrib>EDGAR, Marc ; REIMANN, Johan ; BARR, Brian Chandler</creatorcontrib><description>The example embodiments are directed to a system and method for predicting a flow about an object through the use of a predictive model instead of a machine simulation. Traditional CFD simulations can take hours, even days. The example embodiments provide a predictive model that can predict a CFD flow in seconds which greatly improves design time. In one example, the method may include receiving input data comprising shape parameters of a geometric object and flow parameters associated with the geometric object, predicting, via execution of a predictive model, a computational fluid dynamic (CFD) flow about the geometric object based on the shape parameters and the flow parameters included in the input data, and outputting one or more attributes of the predicted CFD flow about the geometric object via a display device.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201210&amp;DB=EPODOC&amp;CC=US&amp;NR=2020387579A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201210&amp;DB=EPODOC&amp;CC=US&amp;NR=2020387579A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>EDGAR, Marc</creatorcontrib><creatorcontrib>REIMANN, Johan</creatorcontrib><creatorcontrib>BARR, Brian Chandler</creatorcontrib><title>DEEP LEARNING SURROGATE FOR TURBULENT FLOW</title><description>The example embodiments are directed to a system and method for predicting a flow about an object through the use of a predictive model instead of a machine simulation. Traditional CFD simulations can take hours, even days. The example embodiments provide a predictive model that can predict a CFD flow in seconds which greatly improves design time. In one example, the method may include receiving input data comprising shape parameters of a geometric object and flow parameters associated with the geometric object, predicting, via execution of a predictive model, a computational fluid dynamic (CFD) flow about the geometric object based on the shape parameters and the flow parameters included in the input data, and outputting one or more attributes of the predicted CFD flow about the geometric object via a display device.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBycXUNUPBxdQzy8_RzVwgODQryd3cMcVVw8w9SCAkNcgr1cfULUXDz8Q_nYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGxhbmpuaWjobGxKkCAPA0Jck</recordid><startdate>20201210</startdate><enddate>20201210</enddate><creator>EDGAR, Marc</creator><creator>REIMANN, Johan</creator><creator>BARR, Brian Chandler</creator><scope>EVB</scope></search><sort><creationdate>20201210</creationdate><title>DEEP LEARNING SURROGATE FOR TURBULENT FLOW</title><author>EDGAR, Marc ; REIMANN, Johan ; BARR, Brian Chandler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020387579A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>EDGAR, Marc</creatorcontrib><creatorcontrib>REIMANN, Johan</creatorcontrib><creatorcontrib>BARR, Brian Chandler</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>EDGAR, Marc</au><au>REIMANN, Johan</au><au>BARR, Brian Chandler</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEEP LEARNING SURROGATE FOR TURBULENT FLOW</title><date>2020-12-10</date><risdate>2020</risdate><abstract>The example embodiments are directed to a system and method for predicting a flow about an object through the use of a predictive model instead of a machine simulation. Traditional CFD simulations can take hours, even days. The example embodiments provide a predictive model that can predict a CFD flow in seconds which greatly improves design time. In one example, the method may include receiving input data comprising shape parameters of a geometric object and flow parameters associated with the geometric object, predicting, via execution of a predictive model, a computational fluid dynamic (CFD) flow about the geometric object based on the shape parameters and the flow parameters included in the input data, and outputting one or more attributes of the predicted CFD flow about the geometric object via a display device.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020387579A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title DEEP LEARNING SURROGATE FOR TURBULENT FLOW
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A36%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=EDGAR,%20Marc&rft.date=2020-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020387579A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true