MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING

In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krishnan, Padmanabhan, Varadarajulu, Gopikrishnan, Kulkarni, Vaibhav Murlidhar, Arora, Rakhi S
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Krishnan, Padmanabhan
Varadarajulu, Gopikrishnan
Kulkarni, Vaibhav Murlidhar
Arora, Rakhi S
description In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020372394A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020372394A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020372394A13</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEuDqK-w4FzoaaCOB7JxQSTWJIL0qkUiZNoob4_OvgATv_y_cvKe5TGBgJHGIMNJ7haNqCs1hQpsOvBYzqTAoWMYAMkkjkS-OzY1h1G7kFefJf5O6-rxX18zGXz66raamJp6jK9hjJP4608y3vISTSiaQ-iPe5x1_6nPpwvLzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><source>esp@cenet</source><creator>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</creator><creatorcontrib>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</creatorcontrib><description>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201126&amp;DB=EPODOC&amp;CC=US&amp;NR=2020372394A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201126&amp;DB=EPODOC&amp;CC=US&amp;NR=2020372394A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Krishnan, Padmanabhan</creatorcontrib><creatorcontrib>Varadarajulu, Gopikrishnan</creatorcontrib><creatorcontrib>Kulkarni, Vaibhav Murlidhar</creatorcontrib><creatorcontrib>Arora, Rakhi S</creatorcontrib><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><description>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEuDqK-w4FzoaaCOB7JxQSTWJIL0qkUiZNoob4_OvgATv_y_cvKe5TGBgJHGIMNJ7haNqCs1hQpsOvBYzqTAoWMYAMkkjkS-OzY1h1G7kFefJf5O6-rxX18zGXz66raamJp6jK9hjJP4608y3vISTSiaQ-iPe5x1_6nPpwvLzA</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Krishnan, Padmanabhan</creator><creator>Varadarajulu, Gopikrishnan</creator><creator>Kulkarni, Vaibhav Murlidhar</creator><creator>Arora, Rakhi S</creator><scope>EVB</scope></search><sort><creationdate>20201126</creationdate><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><author>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020372394A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Padmanabhan</creatorcontrib><creatorcontrib>Varadarajulu, Gopikrishnan</creatorcontrib><creatorcontrib>Kulkarni, Vaibhav Murlidhar</creatorcontrib><creatorcontrib>Arora, Rakhi S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Padmanabhan</au><au>Varadarajulu, Gopikrishnan</au><au>Kulkarni, Vaibhav Murlidhar</au><au>Arora, Rakhi S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><date>2020-11-26</date><risdate>2020</risdate><abstract>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020372394A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Krishnan,%20Padmanabhan&rft.date=2020-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020372394A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true