MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING
In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Krishnan, Padmanabhan Varadarajulu, Gopikrishnan Kulkarni, Vaibhav Murlidhar Arora, Rakhi S |
description | In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020372394A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020372394A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020372394A13</originalsourceid><addsrcrecordid>eNqNy7EKwjAQgOEuDqK-w4FzoaaCOB7JxQSTWJIL0qkUiZNoob4_OvgATv_y_cvKe5TGBgJHGIMNJ7haNqCs1hQpsOvBYzqTAoWMYAMkkjkS-OzY1h1G7kFefJf5O6-rxX18zGXz66raamJp6jK9hjJP4608y3vISTSiaQ-iPe5x1_6nPpwvLzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><source>esp@cenet</source><creator>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</creator><creatorcontrib>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</creatorcontrib><description>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201126&DB=EPODOC&CC=US&NR=2020372394A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201126&DB=EPODOC&CC=US&NR=2020372394A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Krishnan, Padmanabhan</creatorcontrib><creatorcontrib>Varadarajulu, Gopikrishnan</creatorcontrib><creatorcontrib>Kulkarni, Vaibhav Murlidhar</creatorcontrib><creatorcontrib>Arora, Rakhi S</creatorcontrib><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><description>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy7EKwjAQgOEuDqK-w4FzoaaCOB7JxQSTWJIL0qkUiZNoob4_OvgATv_y_cvKe5TGBgJHGIMNJ7haNqCs1hQpsOvBYzqTAoWMYAMkkjkS-OzY1h1G7kFefJf5O6-rxX18zGXz66raamJp6jK9hjJP4608y3vISTSiaQ-iPe5x1_6nPpwvLzA</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Krishnan, Padmanabhan</creator><creator>Varadarajulu, Gopikrishnan</creator><creator>Kulkarni, Vaibhav Murlidhar</creator><creator>Arora, Rakhi S</creator><scope>EVB</scope></search><sort><creationdate>20201126</creationdate><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><author>Krishnan, Padmanabhan ; Varadarajulu, Gopikrishnan ; Kulkarni, Vaibhav Murlidhar ; Arora, Rakhi S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020372394A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Krishnan, Padmanabhan</creatorcontrib><creatorcontrib>Varadarajulu, Gopikrishnan</creatorcontrib><creatorcontrib>Kulkarni, Vaibhav Murlidhar</creatorcontrib><creatorcontrib>Arora, Rakhi S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krishnan, Padmanabhan</au><au>Varadarajulu, Gopikrishnan</au><au>Kulkarni, Vaibhav Murlidhar</au><au>Arora, Rakhi S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING</title><date>2020-11-26</date><risdate>2020</risdate><abstract>In a secure multi-party computation (sMPC) system, a super mask is constructed using a set of masks corresponding to a set of data contributors. Each data contributor uses a corresponding different mask to obfuscate the data of the data contributor. a first scaled masked data is formed by applying a first scale factor to first masked data of the first data contributor, the scale factor being computed specifically for the first data contributor from the super mask. A union is constructed of all scaled masked data from all data contributors, including the first scaled masked data. A machine learning (ML) model is trained using the union as training data, where the union continues to keep obfuscated the differently masked data from the different data contributors. The training produces a trained ML model usable in the sMPC with the set of data contributors.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020372394A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | MACHINE LEARNING WITH DIFFERENTLY MASKED DATA IN SECURE MULTI-PARTY COMPUTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Krishnan,%20Padmanabhan&rft.date=2020-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020372394A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |