EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING

Various examples are disclosed for forecasting resource usage and computing capacity utilizing an exponential decay. In some examples, a computing environment can obtain usage measurements from a data stream over a time interval, where the usage measurements describe utilization of computing resourc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lin, Junyuan, Gao, Peng, Wang, Xing, Lu, Jinyi, Brown, Darren, Mathur, Keshav, Pedersen, Paul, Nutman, Leah
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Lin, Junyuan
Gao, Peng
Wang, Xing
Lu, Jinyi
Brown, Darren
Mathur, Keshav
Pedersen, Paul
Nutman, Leah
description Various examples are disclosed for forecasting resource usage and computing capacity utilizing an exponential decay. In some examples, a computing environment can obtain usage measurements from a data stream over a time interval, where the usage measurements describe utilization of computing resource. The computing environment can generate a weight function for individual ones of the usage measurements, where the weight function exponentially decays the usage measurements based on a respective time period at which the usage measurements were obtained. The computing environment can forecast a future capacity of the computing resources based on the usage measurements and the weight function assigned to the individual ones of the usage measurements. The computing environment can further upgrade a forecast engine to use the exponential decay without resetting the forecast engine or its memory.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020371896A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020371896A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020371896A13</originalsourceid><addsrcrecordid>eNrjZNB1jQjw93P1C_F09FFwcXV2jFQIcnX00Q3x9HVVcHYMcHT2DIlUCPBx9PPz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGxuaGFpZmjobGxKkCAFDuJmY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING</title><source>esp@cenet</source><creator>Lin, Junyuan ; Gao, Peng ; Wang, Xing ; Lu, Jinyi ; Brown, Darren ; Mathur, Keshav ; Pedersen, Paul ; Nutman, Leah</creator><creatorcontrib>Lin, Junyuan ; Gao, Peng ; Wang, Xing ; Lu, Jinyi ; Brown, Darren ; Mathur, Keshav ; Pedersen, Paul ; Nutman, Leah</creatorcontrib><description>Various examples are disclosed for forecasting resource usage and computing capacity utilizing an exponential decay. In some examples, a computing environment can obtain usage measurements from a data stream over a time interval, where the usage measurements describe utilization of computing resource. The computing environment can generate a weight function for individual ones of the usage measurements, where the weight function exponentially decays the usage measurements based on a respective time period at which the usage measurements were obtained. The computing environment can forecast a future capacity of the computing resources based on the usage measurements and the weight function assigned to the individual ones of the usage measurements. The computing environment can further upgrade a forecast engine to use the exponential decay without resetting the forecast engine or its memory.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201126&amp;DB=EPODOC&amp;CC=US&amp;NR=2020371896A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201126&amp;DB=EPODOC&amp;CC=US&amp;NR=2020371896A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Lin, Junyuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Lu, Jinyi</creatorcontrib><creatorcontrib>Brown, Darren</creatorcontrib><creatorcontrib>Mathur, Keshav</creatorcontrib><creatorcontrib>Pedersen, Paul</creatorcontrib><creatorcontrib>Nutman, Leah</creatorcontrib><title>EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING</title><description>Various examples are disclosed for forecasting resource usage and computing capacity utilizing an exponential decay. In some examples, a computing environment can obtain usage measurements from a data stream over a time interval, where the usage measurements describe utilization of computing resource. The computing environment can generate a weight function for individual ones of the usage measurements, where the weight function exponentially decays the usage measurements based on a respective time period at which the usage measurements were obtained. The computing environment can forecast a future capacity of the computing resources based on the usage measurements and the weight function assigned to the individual ones of the usage measurements. The computing environment can further upgrade a forecast engine to use the exponential decay without resetting the forecast engine or its memory.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB1jQjw93P1C_F09FFwcXV2jFQIcnX00Q3x9HVVcHYMcHT2DIlUCPBx9PPz9HPnYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGxuaGFpZmjobGxKkCAFDuJmY</recordid><startdate>20201126</startdate><enddate>20201126</enddate><creator>Lin, Junyuan</creator><creator>Gao, Peng</creator><creator>Wang, Xing</creator><creator>Lu, Jinyi</creator><creator>Brown, Darren</creator><creator>Mathur, Keshav</creator><creator>Pedersen, Paul</creator><creator>Nutman, Leah</creator><scope>EVB</scope></search><sort><creationdate>20201126</creationdate><title>EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING</title><author>Lin, Junyuan ; Gao, Peng ; Wang, Xing ; Lu, Jinyi ; Brown, Darren ; Mathur, Keshav ; Pedersen, Paul ; Nutman, Leah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020371896A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Junyuan</creatorcontrib><creatorcontrib>Gao, Peng</creatorcontrib><creatorcontrib>Wang, Xing</creatorcontrib><creatorcontrib>Lu, Jinyi</creatorcontrib><creatorcontrib>Brown, Darren</creatorcontrib><creatorcontrib>Mathur, Keshav</creatorcontrib><creatorcontrib>Pedersen, Paul</creatorcontrib><creatorcontrib>Nutman, Leah</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Junyuan</au><au>Gao, Peng</au><au>Wang, Xing</au><au>Lu, Jinyi</au><au>Brown, Darren</au><au>Mathur, Keshav</au><au>Pedersen, Paul</au><au>Nutman, Leah</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING</title><date>2020-11-26</date><risdate>2020</risdate><abstract>Various examples are disclosed for forecasting resource usage and computing capacity utilizing an exponential decay. In some examples, a computing environment can obtain usage measurements from a data stream over a time interval, where the usage measurements describe utilization of computing resource. The computing environment can generate a weight function for individual ones of the usage measurements, where the weight function exponentially decays the usage measurements based on a respective time period at which the usage measurements were obtained. The computing environment can forecast a future capacity of the computing resources based on the usage measurements and the weight function assigned to the individual ones of the usage measurements. The computing environment can further upgrade a forecast engine to use the exponential decay without resetting the forecast engine or its memory.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020371896A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title EXPONENTIAL DECAY REAL-TIME CAPACITY PLANNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Lin,%20Junyuan&rft.date=2020-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020371896A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true