Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment

A unified access layer (UAL) and scalable query engine receive queries from various interfaces and executes the queries with respect to non-heterogeneous data management and analytic computing platforms that are sources of record for data they store. Query performance is monitored and used to genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Henze, Frank, Nawrocke, Kelly, Thiagarajan, Raghu, McManus, Matt, Nettling, Martin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Henze, Frank
Nawrocke, Kelly
Thiagarajan, Raghu
McManus, Matt
Nettling, Martin
description A unified access layer (UAL) and scalable query engine receive queries from various interfaces and executes the queries with respect to non-heterogeneous data management and analytic computing platforms that are sources of record for data they store. Query performance is monitored and used to generate a query performance model. The query performance model may be used to generate alternatives for queries of users or groups of users or to generate policies for achieving a target performance. Performance may be improved by monitoring queries and retrieving catalog data for databases referenced and generating a recommendation model according to them. Duplicative or overlapping sources may be identified based on the monitoring and transformations to improve accuracy and security may be suggested. A recommendation model may be generated based on analysis of queries received through the UAL. Transformations may be performed according to the recommendation model in order to improve performance.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020356873A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020356873A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020356873A13</originalsourceid><addsrcrecordid>eNrjZAgJSk3Oz81NzUtJLMnMz1PwzU9JzVFwT81LLYIIOOalKIQWpyp4ApkKHpVJRZkpCr6lOSWZus45-aUpCi6JJYlJiUAFrnllmUX5eUCjSngYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWIy0PyS-NBgIwMjA2NTMwtzY0dDY-JUAQDffjic</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment</title><source>esp@cenet</source><creator>Henze, Frank ; Nawrocke, Kelly ; Thiagarajan, Raghu ; McManus, Matt ; Nettling, Martin</creator><creatorcontrib>Henze, Frank ; Nawrocke, Kelly ; Thiagarajan, Raghu ; McManus, Matt ; Nettling, Martin</creatorcontrib><description>A unified access layer (UAL) and scalable query engine receive queries from various interfaces and executes the queries with respect to non-heterogeneous data management and analytic computing platforms that are sources of record for data they store. Query performance is monitored and used to generate a query performance model. The query performance model may be used to generate alternatives for queries of users or groups of users or to generate policies for achieving a target performance. Performance may be improved by monitoring queries and retrieving catalog data for databases referenced and generating a recommendation model according to them. Duplicative or overlapping sources may be identified based on the monitoring and transformations to improve accuracy and security may be suggested. A recommendation model may be generated based on analysis of queries received through the UAL. Transformations may be performed according to the recommendation model in order to improve performance.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201112&amp;DB=EPODOC&amp;CC=US&amp;NR=2020356873A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201112&amp;DB=EPODOC&amp;CC=US&amp;NR=2020356873A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Henze, Frank</creatorcontrib><creatorcontrib>Nawrocke, Kelly</creatorcontrib><creatorcontrib>Thiagarajan, Raghu</creatorcontrib><creatorcontrib>McManus, Matt</creatorcontrib><creatorcontrib>Nettling, Martin</creatorcontrib><title>Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment</title><description>A unified access layer (UAL) and scalable query engine receive queries from various interfaces and executes the queries with respect to non-heterogeneous data management and analytic computing platforms that are sources of record for data they store. Query performance is monitored and used to generate a query performance model. The query performance model may be used to generate alternatives for queries of users or groups of users or to generate policies for achieving a target performance. Performance may be improved by monitoring queries and retrieving catalog data for databases referenced and generating a recommendation model according to them. Duplicative or overlapping sources may be identified based on the monitoring and transformations to improve accuracy and security may be suggested. A recommendation model may be generated based on analysis of queries received through the UAL. Transformations may be performed according to the recommendation model in order to improve performance.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJSk3Oz81NzUtJLMnMz1PwzU9JzVFwT81LLYIIOOalKIQWpyp4ApkKHpVJRZkpCr6lOSWZus45-aUpCi6JJYlJiUAFrnllmUX5eUCjSngYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWIy0PyS-NBgIwMjA2NTMwtzY0dDY-JUAQDffjic</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Henze, Frank</creator><creator>Nawrocke, Kelly</creator><creator>Thiagarajan, Raghu</creator><creator>McManus, Matt</creator><creator>Nettling, Martin</creator><scope>EVB</scope></search><sort><creationdate>20201112</creationdate><title>Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment</title><author>Henze, Frank ; Nawrocke, Kelly ; Thiagarajan, Raghu ; McManus, Matt ; Nettling, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020356873A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Henze, Frank</creatorcontrib><creatorcontrib>Nawrocke, Kelly</creatorcontrib><creatorcontrib>Thiagarajan, Raghu</creatorcontrib><creatorcontrib>McManus, Matt</creatorcontrib><creatorcontrib>Nettling, Martin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Henze, Frank</au><au>Nawrocke, Kelly</au><au>Thiagarajan, Raghu</au><au>McManus, Matt</au><au>Nettling, Martin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment</title><date>2020-11-12</date><risdate>2020</risdate><abstract>A unified access layer (UAL) and scalable query engine receive queries from various interfaces and executes the queries with respect to non-heterogeneous data management and analytic computing platforms that are sources of record for data they store. Query performance is monitored and used to generate a query performance model. The query performance model may be used to generate alternatives for queries of users or groups of users or to generate policies for achieving a target performance. Performance may be improved by monitoring queries and retrieving catalog data for databases referenced and generating a recommendation model according to them. Duplicative or overlapping sources may be identified based on the monitoring and transformations to improve accuracy and security may be suggested. A recommendation model may be generated based on analysis of queries received through the UAL. Transformations may be performed according to the recommendation model in order to improve performance.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020356873A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Recommendation Model Generation And Use In A Hybrid Multi-Cloud Database Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A50%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Henze,%20Frank&rft.date=2020-11-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020356873A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true