CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM

A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Palapudi, Sriram, Thakur, Aniruddha Madhusudhan, Govindarajan, Kannan, Wong, Andrew Kai Chiu, Jayaraman, Baskar
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Palapudi, Sriram
Thakur, Aniruddha Madhusudhan
Govindarajan, Kannan
Wong, Andrew Kai Chiu
Jayaraman, Baskar
description A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020351383A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020351383A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020351383A13</originalsourceid><addsrcrecordid>eNrjZPB3dvULCXL08YxydVHwdXT28PRzVfBxdQzy8_RzVwgIcnXxdA7xD1JwA2JHhSBXX_8QVwU_15Bw_yBvoHo_R3dXX6AJCgE-jiFANb48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjA2NTQ2MLY0dCYOFUACP0vxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><source>esp@cenet</source><creator>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</creator><creatorcontrib>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</creatorcontrib><description>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201105&amp;DB=EPODOC&amp;CC=US&amp;NR=2020351383A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201105&amp;DB=EPODOC&amp;CC=US&amp;NR=2020351383A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Palapudi, Sriram</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudhan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Wong, Andrew Kai Chiu</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><description>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3dvULCXL08YxydVHwdXT28PRzVfBxdQzy8_RzVwgIcnXxdA7xD1JwA2JHhSBXX_8QVwU_15Bw_yBvoHo_R3dXX6AJCgE-jiFANb48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjA2NTQ2MLY0dCYOFUACP0vxg</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Palapudi, Sriram</creator><creator>Thakur, Aniruddha Madhusudhan</creator><creator>Govindarajan, Kannan</creator><creator>Wong, Andrew Kai Chiu</creator><creator>Jayaraman, Baskar</creator><scope>EVB</scope></search><sort><creationdate>20201105</creationdate><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><author>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020351383A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Palapudi, Sriram</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudhan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Wong, Andrew Kai Chiu</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Palapudi, Sriram</au><au>Thakur, Aniruddha Madhusudhan</au><au>Govindarajan, Kannan</au><au>Wong, Andrew Kai Chiu</au><au>Jayaraman, Baskar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><date>2020-11-05</date><risdate>2020</risdate><abstract>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020351383A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Palapudi,%20Sriram&rft.date=2020-11-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020351383A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true