CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM
A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user i...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Palapudi, Sriram Thakur, Aniruddha Madhusudhan Govindarajan, Kannan Wong, Andrew Kai Chiu Jayaraman, Baskar |
description | A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020351383A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020351383A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020351383A13</originalsourceid><addsrcrecordid>eNrjZPB3dvULCXL08YxydVHwdXT28PRzVfBxdQzy8_RzVwgIcnXxdA7xD1JwA2JHhSBXX_8QVwU_15Bw_yBvoHo_R3dXX6AJCgE-jiFANb48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjA2NTQ2MLY0dCYOFUACP0vxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><source>esp@cenet</source><creator>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</creator><creatorcontrib>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</creatorcontrib><description>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201105&DB=EPODOC&CC=US&NR=2020351383A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201105&DB=EPODOC&CC=US&NR=2020351383A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Palapudi, Sriram</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudhan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Wong, Andrew Kai Chiu</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><description>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPB3dvULCXL08YxydVHwdXT28PRzVfBxdQzy8_RzVwgIcnXxdA7xD1JwA2JHhSBXX_8QVwU_15Bw_yBvoHo_R3dXX6AJCgE-jiFANb48DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjA2NTQ2MLY0dCYOFUACP0vxg</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>Palapudi, Sriram</creator><creator>Thakur, Aniruddha Madhusudhan</creator><creator>Govindarajan, Kannan</creator><creator>Wong, Andrew Kai Chiu</creator><creator>Jayaraman, Baskar</creator><scope>EVB</scope></search><sort><creationdate>20201105</creationdate><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><author>Palapudi, Sriram ; Thakur, Aniruddha Madhusudhan ; Govindarajan, Kannan ; Wong, Andrew Kai Chiu ; Jayaraman, Baskar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020351383A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Palapudi, Sriram</creatorcontrib><creatorcontrib>Thakur, Aniruddha Madhusudhan</creatorcontrib><creatorcontrib>Govindarajan, Kannan</creatorcontrib><creatorcontrib>Wong, Andrew Kai Chiu</creatorcontrib><creatorcontrib>Jayaraman, Baskar</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Palapudi, Sriram</au><au>Thakur, Aniruddha Madhusudhan</au><au>Govindarajan, Kannan</au><au>Wong, Andrew Kai Chiu</au><au>Jayaraman, Baskar</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM</title><date>2020-11-05</date><risdate>2020</risdate><abstract>A remote network management platform is provided that includes an end-user computational instance dedicated to a managed network, a training computational instance, and a prediction computational instance. The training instance is configured to receive a corpus of textual records from the end-user instance and to determine therefrom a machine learning (ML) model to determine the numerical similarity between input textual records and textual records in the corpus of textual records. The prediction instance is configured to receive the ML model and an additional textual record from the end-user instance, to use the ML model to determine respective numerical similarities between the additional textual record and the textual records in the corpus of textual records, and to transmit, based on the respective numerical similarities, representations of one or more of the textual records in the corpus of textual records to the end-user computational instance.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020351383A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRIC DIGITAL DATA PROCESSING ELECTRICITY HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION |
title | CENTRALIZED MACHINE LEARNING PREDICTOR FOR A REMOTE NETWORK MANAGEMENT PLATFORM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Palapudi,%20Sriram&rft.date=2020-11-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020351383A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |