SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS

A system and method for providing object recognition using artificial neural networks. The method includes capturing a plurality of reference images with a camera associated with an edge node on a communication network. The reference images are received by a centralized server on the communication n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BRANDÃO DE OLIVEIRA, TALMAI, SIVARAMAN, KALPATHY SITARAMAN, MURTHY, ABHISHEK, SHEN, XIAOKE, RANGAVAJHALA, SIRISHA
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BRANDÃO DE OLIVEIRA, TALMAI
SIVARAMAN, KALPATHY SITARAMAN
MURTHY, ABHISHEK
SHEN, XIAOKE
RANGAVAJHALA, SIRISHA
description A system and method for providing object recognition using artificial neural networks. The method includes capturing a plurality of reference images with a camera associated with an edge node on a communication network. The reference images are received by a centralized server on the communication network. The reference images are analyzed with a parent neural network of the centralized server to determine a subset of objects identified by the parent neural network in the reference images. One or more filters that are responsive to the subset of objects are selected from the parent neural network. A pruned neural network is created from only the one or more filters. The pruned neural network is deployed to the edge node. Real-time images are captured with the camera of the edge node and objects in the real-time images are identified with the pruned neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020342324A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020342324A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020342324A13</originalsourceid><addsrcrecordid>eNrjZLALjgwOcfVVcPRzUfB1DfHwd1Fw8w9S8HfycnUOUQhydfZ39_MM8fT3UwgN9vRzV_BzDQ1y9AFSIeH-Qd7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIwNjEyNjIxNHQmDhVAA-GKyc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS</title><source>esp@cenet</source><creator>BRANDÃO DE OLIVEIRA, TALMAI ; SIVARAMAN, KALPATHY SITARAMAN ; MURTHY, ABHISHEK ; SHEN, XIAOKE ; RANGAVAJHALA, SIRISHA</creator><creatorcontrib>BRANDÃO DE OLIVEIRA, TALMAI ; SIVARAMAN, KALPATHY SITARAMAN ; MURTHY, ABHISHEK ; SHEN, XIAOKE ; RANGAVAJHALA, SIRISHA</creatorcontrib><description>A system and method for providing object recognition using artificial neural networks. The method includes capturing a plurality of reference images with a camera associated with an edge node on a communication network. The reference images are received by a centralized server on the communication network. The reference images are analyzed with a parent neural network of the centralized server to determine a subset of objects identified by the parent neural network in the reference images. One or more filters that are responsive to the subset of objects are selected from the parent neural network. A pruned neural network is created from only the one or more filters. The pruned neural network is deployed to the edge node. Real-time images are captured with the camera of the edge node and objects in the real-time images are identified with the pruned neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201029&amp;DB=EPODOC&amp;CC=US&amp;NR=2020342324A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201029&amp;DB=EPODOC&amp;CC=US&amp;NR=2020342324A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BRANDÃO DE OLIVEIRA, TALMAI</creatorcontrib><creatorcontrib>SIVARAMAN, KALPATHY SITARAMAN</creatorcontrib><creatorcontrib>MURTHY, ABHISHEK</creatorcontrib><creatorcontrib>SHEN, XIAOKE</creatorcontrib><creatorcontrib>RANGAVAJHALA, SIRISHA</creatorcontrib><title>SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS</title><description>A system and method for providing object recognition using artificial neural networks. The method includes capturing a plurality of reference images with a camera associated with an edge node on a communication network. The reference images are received by a centralized server on the communication network. The reference images are analyzed with a parent neural network of the centralized server to determine a subset of objects identified by the parent neural network in the reference images. One or more filters that are responsive to the subset of objects are selected from the parent neural network. A pruned neural network is created from only the one or more filters. The pruned neural network is deployed to the edge node. Real-time images are captured with the camera of the edge node and objects in the real-time images are identified with the pruned neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLALjgwOcfVVcPRzUfB1DfHwd1Fw8w9S8HfycnUOUQhydfZ39_MM8fT3UwgN9vRzV_BzDQ1y9AFSIeH-Qd7BPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIwNjEyNjIxNHQmDhVAA-GKyc</recordid><startdate>20201029</startdate><enddate>20201029</enddate><creator>BRANDÃO DE OLIVEIRA, TALMAI</creator><creator>SIVARAMAN, KALPATHY SITARAMAN</creator><creator>MURTHY, ABHISHEK</creator><creator>SHEN, XIAOKE</creator><creator>RANGAVAJHALA, SIRISHA</creator><scope>EVB</scope></search><sort><creationdate>20201029</creationdate><title>SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS</title><author>BRANDÃO DE OLIVEIRA, TALMAI ; SIVARAMAN, KALPATHY SITARAMAN ; MURTHY, ABHISHEK ; SHEN, XIAOKE ; RANGAVAJHALA, SIRISHA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020342324A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>BRANDÃO DE OLIVEIRA, TALMAI</creatorcontrib><creatorcontrib>SIVARAMAN, KALPATHY SITARAMAN</creatorcontrib><creatorcontrib>MURTHY, ABHISHEK</creatorcontrib><creatorcontrib>SHEN, XIAOKE</creatorcontrib><creatorcontrib>RANGAVAJHALA, SIRISHA</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BRANDÃO DE OLIVEIRA, TALMAI</au><au>SIVARAMAN, KALPATHY SITARAMAN</au><au>MURTHY, ABHISHEK</au><au>SHEN, XIAOKE</au><au>RANGAVAJHALA, SIRISHA</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS</title><date>2020-10-29</date><risdate>2020</risdate><abstract>A system and method for providing object recognition using artificial neural networks. The method includes capturing a plurality of reference images with a camera associated with an edge node on a communication network. The reference images are received by a centralized server on the communication network. The reference images are analyzed with a parent neural network of the centralized server to determine a subset of objects identified by the parent neural network in the reference images. One or more filters that are responsive to the subset of objects are selected from the parent neural network. A pruned neural network is created from only the one or more filters. The pruned neural network is deployed to the edge node. Real-time images are captured with the camera of the edge node and objects in the real-time images are identified with the pruned neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020342324A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SYSTEM AND METHOD FOR OBJECT RECOGNITION USING NEURAL NETWORKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BRAND%C3%83O%20DE%20OLIVEIRA,%20TALMAI&rft.date=2020-10-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020342324A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true