SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE

Systems, methods and media are provided for training a snippet extractor to create snippets based on information extracted from published descriptions. In one example, a computer-implemented method includes creating, based on a non-RNN (Recurrent Neural Network) extraction technique performed on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Parikh, Nish, House, Justin Nicholas, Khatri, Chandra Prakash, Solanki, Sameep Navin, Singh, Gyanit
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Parikh, Nish
House, Justin Nicholas
Khatri, Chandra Prakash
Solanki, Sameep Navin
Singh, Gyanit
description Systems, methods and media are provided for training a snippet extractor to create snippets based on information extracted from published descriptions. In one example, a computer-implemented method includes creating, based on a non-RNN (Recurrent Neural Network) extraction technique performed on the published descriptions, a plurality of base models, each base model including one or more sample description summaries; evaluating the base models using an evaluation technique; selecting an optimum base model; developing a classification model using RNN extraction, the classification model based on description summaries contained in the optimum base model; and using the classification model to train the snippet extractor by machine learning.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020320370A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020320370A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020320370A13</originalsourceid><addsrcrecordid>eNqNyr8KwjAQgPEuDqK-w4GzENtBcDviFYNtUi53-GcpReIkWqjvjxl8AOGD3_LNC43edR0J0EUYrQTeA5NVZvICnpSxycg58ClCHRgknxC1bZHdDcUFDyjg_EGj8BWixYaWxewxPKe0-rko1jWJPW7S-O7TNA739EqfXmNpSlPldga31X_XF49aMgs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE</title><source>esp@cenet</source><creator>Parikh, Nish ; House, Justin Nicholas ; Khatri, Chandra Prakash ; Solanki, Sameep Navin ; Singh, Gyanit</creator><creatorcontrib>Parikh, Nish ; House, Justin Nicholas ; Khatri, Chandra Prakash ; Solanki, Sameep Navin ; Singh, Gyanit</creatorcontrib><description>Systems, methods and media are provided for training a snippet extractor to create snippets based on information extracted from published descriptions. In one example, a computer-implemented method includes creating, based on a non-RNN (Recurrent Neural Network) extraction technique performed on the published descriptions, a plurality of base models, each base model including one or more sample description summaries; evaluating the base models using an evaluation technique; selecting an optimum base model; developing a classification model using RNN extraction, the classification model based on description summaries contained in the optimum base model; and using the classification model to train the snippet extractor by machine learning.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201008&amp;DB=EPODOC&amp;CC=US&amp;NR=2020320370A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201008&amp;DB=EPODOC&amp;CC=US&amp;NR=2020320370A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Parikh, Nish</creatorcontrib><creatorcontrib>House, Justin Nicholas</creatorcontrib><creatorcontrib>Khatri, Chandra Prakash</creatorcontrib><creatorcontrib>Solanki, Sameep Navin</creatorcontrib><creatorcontrib>Singh, Gyanit</creatorcontrib><title>SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE</title><description>Systems, methods and media are provided for training a snippet extractor to create snippets based on information extracted from published descriptions. In one example, a computer-implemented method includes creating, based on a non-RNN (Recurrent Neural Network) extraction technique performed on the published descriptions, a plurality of base models, each base model including one or more sample description summaries; evaluating the base models using an evaluation technique; selecting an optimum base model; developing a classification model using RNN extraction, the classification model based on description summaries contained in the optimum base model; and using the classification model to train the snippet extractor by machine learning.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr8KwjAQgPEuDqK-w4GzENtBcDviFYNtUi53-GcpReIkWqjvjxl8AOGD3_LNC43edR0J0EUYrQTeA5NVZvICnpSxycg58ClCHRgknxC1bZHdDcUFDyjg_EGj8BWixYaWxewxPKe0-rko1jWJPW7S-O7TNA739EqfXmNpSlPldga31X_XF49aMgs</recordid><startdate>20201008</startdate><enddate>20201008</enddate><creator>Parikh, Nish</creator><creator>House, Justin Nicholas</creator><creator>Khatri, Chandra Prakash</creator><creator>Solanki, Sameep Navin</creator><creator>Singh, Gyanit</creator><scope>EVB</scope></search><sort><creationdate>20201008</creationdate><title>SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE</title><author>Parikh, Nish ; House, Justin Nicholas ; Khatri, Chandra Prakash ; Solanki, Sameep Navin ; Singh, Gyanit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020320370A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Parikh, Nish</creatorcontrib><creatorcontrib>House, Justin Nicholas</creatorcontrib><creatorcontrib>Khatri, Chandra Prakash</creatorcontrib><creatorcontrib>Solanki, Sameep Navin</creatorcontrib><creatorcontrib>Singh, Gyanit</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parikh, Nish</au><au>House, Justin Nicholas</au><au>Khatri, Chandra Prakash</au><au>Solanki, Sameep Navin</au><au>Singh, Gyanit</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE</title><date>2020-10-08</date><risdate>2020</risdate><abstract>Systems, methods and media are provided for training a snippet extractor to create snippets based on information extracted from published descriptions. In one example, a computer-implemented method includes creating, based on a non-RNN (Recurrent Neural Network) extraction technique performed on the published descriptions, a plurality of base models, each base model including one or more sample description summaries; evaluating the base models using an evaluation technique; selecting an optimum base model; developing a classification model using RNN extraction, the classification model based on description summaries contained in the optimum base model; and using the classification model to train the snippet extractor by machine learning.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020320370A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SNIPPET EXTRACTOR: RECURRENT NEURAL NETWORKS FOR TEXT SUMMARIZATION AT INDUSTRY SCALE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Parikh,%20Nish&rft.date=2020-10-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020320370A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true