COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS

Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TANG, Kai Fan, GABRIELSON, Jacob Adam, BURGIN, Joshua M, BONNETT, Brad
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TANG, Kai Fan
GABRIELSON, Jacob Adam
BURGIN, Joshua M
BONNETT, Brad
description Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020301741A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020301741A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020301741A13</originalsourceid><addsrcrecordid>eNrjZHB09vcPcvH0cwxxdVEICHJ18XQO8QxzVXAMDfEPdnb08fRzV_B3UwjzDAoJBfKigKqCXIP9Q4OcXRXcg_xDA4J5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGBsYGhuYmho6ExcaoAvPAsSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><source>esp@cenet</source><creator>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</creator><creatorcontrib>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</creatorcontrib><description>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200924&amp;DB=EPODOC&amp;CC=US&amp;NR=2020301741A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200924&amp;DB=EPODOC&amp;CC=US&amp;NR=2020301741A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG, Kai Fan</creatorcontrib><creatorcontrib>GABRIELSON, Jacob Adam</creatorcontrib><creatorcontrib>BURGIN, Joshua M</creatorcontrib><creatorcontrib>BONNETT, Brad</creatorcontrib><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><description>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB09vcPcvH0cwxxdVEICHJ18XQO8QxzVXAMDfEPdnb08fRzV_B3UwjzDAoJBfKigKqCXIP9Q4OcXRXcg_xDA4J5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGBsYGhuYmho6ExcaoAvPAsSQ</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>TANG, Kai Fan</creator><creator>GABRIELSON, Jacob Adam</creator><creator>BURGIN, Joshua M</creator><creator>BONNETT, Brad</creator><scope>EVB</scope></search><sort><creationdate>20200924</creationdate><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><author>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020301741A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG, Kai Fan</creatorcontrib><creatorcontrib>GABRIELSON, Jacob Adam</creatorcontrib><creatorcontrib>BURGIN, Joshua M</creatorcontrib><creatorcontrib>BONNETT, Brad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG, Kai Fan</au><au>GABRIELSON, Jacob Adam</au><au>BURGIN, Joshua M</au><au>BONNETT, Brad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><date>2020-09-24</date><risdate>2020</risdate><abstract>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020301741A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG,%20Kai%20Fan&rft.date=2020-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020301741A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true