COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS
Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associ...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TANG, Kai Fan GABRIELSON, Jacob Adam BURGIN, Joshua M BONNETT, Brad |
description | Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020301741A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020301741A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020301741A13</originalsourceid><addsrcrecordid>eNrjZHB09vcPcvH0cwxxdVEICHJ18XQO8QxzVXAMDfEPdnb08fRzV_B3UwjzDAoJBfKigKqCXIP9Q4OcXRXcg_xDA4J5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGBsYGhuYmho6ExcaoAvPAsSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><source>esp@cenet</source><creator>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</creator><creatorcontrib>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</creatorcontrib><description>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200924&DB=EPODOC&CC=US&NR=2020301741A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200924&DB=EPODOC&CC=US&NR=2020301741A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG, Kai Fan</creatorcontrib><creatorcontrib>GABRIELSON, Jacob Adam</creatorcontrib><creatorcontrib>BURGIN, Joshua M</creatorcontrib><creatorcontrib>BONNETT, Brad</creatorcontrib><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><description>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB09vcPcvH0cwxxdVEICHJ18XQO8QxzVXAMDfEPdnb08fRzV_B3UwjzDAoJBfKigKqCXIP9Q4OcXRXcg_xDA4J5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgZGBsYGhuYmho6ExcaoAvPAsSQ</recordid><startdate>20200924</startdate><enddate>20200924</enddate><creator>TANG, Kai Fan</creator><creator>GABRIELSON, Jacob Adam</creator><creator>BURGIN, Joshua M</creator><creator>BONNETT, Brad</creator><scope>EVB</scope></search><sort><creationdate>20200924</creationdate><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><author>TANG, Kai Fan ; GABRIELSON, Jacob Adam ; BURGIN, Joshua M ; BONNETT, Brad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020301741A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG, Kai Fan</creatorcontrib><creatorcontrib>GABRIELSON, Jacob Adam</creatorcontrib><creatorcontrib>BURGIN, Joshua M</creatorcontrib><creatorcontrib>BONNETT, Brad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG, Kai Fan</au><au>GABRIELSON, Jacob Adam</au><au>BURGIN, Joshua M</au><au>BONNETT, Brad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS</title><date>2020-09-24</date><risdate>2020</risdate><abstract>Techniques are described for optimizing the allocation of computing resources provided by a service provider network-for example, compute resources such as virtual machine (VM) instances, containers, standalone servers, and possibly other types of computing resources-among computing workloads associated with a user or group of users of the service provider network. A service provider network provides various tools and interfaces to help businesses and other organizations optimize the utilization of computing resource pools obtained by the organizations from the service provider network, including the ability to efficiently schedule use of the resources among workloads having varying resource demands, usage patterns, relative priorities, execution deadlines, or combinations thereof. A service provider network further provides various graphical user interfaces (GUIs) to help users visualize and manage the historical and scheduled uses of computing resources by users' workloads according to user preferences.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020301741A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | COORDINATED PREDICTIVE AUTOSCALING OF VIRTUALIZED RESOURCE GROUPS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG,%20Kai%20Fan&rft.date=2020-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020301741A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |