POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL
Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminato...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Adler, Jonas Anders Öktem, Ozan |
description | Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020294284A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020294284A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020294284A13</originalsourceid><addsrcrecordid>eNrjZLAM8A8OcQ3y9A9S8PR1dHdVCHb0DfDx9HNXCA0GkcEhjiGewSGezo4-Cj6ujkF-IEFffxdXHx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGQAhJYmRhYmjobGxKkCAE32Kec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL</title><source>esp@cenet</source><creator>Adler, Jonas Anders ; Öktem, Ozan</creator><creatorcontrib>Adler, Jonas Anders ; Öktem, Ozan</creatorcontrib><description>Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200917&DB=EPODOC&CC=US&NR=2020294284A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200917&DB=EPODOC&CC=US&NR=2020294284A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Adler, Jonas Anders</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><title>POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL</title><description>Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAM8A8OcQ3y9A9S8PR1dHdVCHb0DfDx9HNXCA0GkcEhjiGewSGezo4-Cj6ujkF-IEFffxdXHx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGQAhJYmRhYmjobGxKkCAE32Kec</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>Adler, Jonas Anders</creator><creator>Öktem, Ozan</creator><scope>EVB</scope></search><sort><creationdate>20200917</creationdate><title>POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL</title><author>Adler, Jonas Anders ; Öktem, Ozan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020294284A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Adler, Jonas Anders</creatorcontrib><creatorcontrib>Öktem, Ozan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Adler, Jonas Anders</au><au>Öktem, Ozan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL</title><date>2020-09-17</date><risdate>2020</risdate><abstract>Image reconstruction can include using a statistical or machine learning, MAP estimator, or other reconstruction technique to produce a reconstructed image from acquired imaging data. A Conditional Generative Adversarial Network (CGAN) technique can be used to train a Generator, using a Discriminator, to generate posterior distribution sampled images that can be displayed or further processed such as to help provide uncertainty information about a mean reconstruction image. Such uncertainty information can be useful to help understand or even visually modify the mean reconstruction image. Similar techniques can be used in a segmentation use-case, instead of a reconstruction use case. The uncertainty information can also be useful for other post-processing techniques.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020294284A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | POSTERIOR IMAGE SAMPLING USING STATISTICAL LEARNING MODEL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Adler,%20Jonas%20Anders&rft.date=2020-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020294284A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |