NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING

A recurrent neural network that predicts blood glucose level includes a first long short-term memory (LSTM) network and a second LSTM network. The first LSTM network may include an input to receive near-infrared (NIR) radiation data and includes an output. The second LSTM network may include an inpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU, Liu, SAKHAEE, Elham, GEORGIADIS, Georgios, DENG, Weiran
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU, Liu
SAKHAEE, Elham
GEORGIADIS, Georgios
DENG, Weiran
description A recurrent neural network that predicts blood glucose level includes a first long short-term memory (LSTM) network and a second LSTM network. The first LSTM network may include an input to receive near-infrared (NIR) radiation data and includes an output. The second LSTM network may include an input to receive the output of the first LSTM network and an output to output blood glucose level data based on the NIR radiation data input to the first LSTM network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020293882A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020293882A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020293882A13</originalsourceid><addsrcrecordid>eNrjZPD1c3UM0vX0cwtyDHJ1UQgOcHUOCfIPdvYPiFTQ8PMM0lRwcgwGSrj7hDr7B7sqBABVeTqHePr7KYQGe_q5K7i4ugYo-AAN8QPyeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkQEQWhpbWBg5GhoTpwoAkVQvDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING</title><source>esp@cenet</source><creator>LIU, Liu ; SAKHAEE, Elham ; GEORGIADIS, Georgios ; DENG, Weiran</creator><creatorcontrib>LIU, Liu ; SAKHAEE, Elham ; GEORGIADIS, Georgios ; DENG, Weiran</creatorcontrib><description>A recurrent neural network that predicts blood glucose level includes a first long short-term memory (LSTM) network and a second LSTM network. The first LSTM network may include an input to receive near-infrared (NIR) radiation data and includes an output. The second LSTM network may include an input to receive the output of the first LSTM network and an output to output blood glucose level data based on the NIR radiation data input to the first LSTM network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200917&amp;DB=EPODOC&amp;CC=US&amp;NR=2020293882A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200917&amp;DB=EPODOC&amp;CC=US&amp;NR=2020293882A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU, Liu</creatorcontrib><creatorcontrib>SAKHAEE, Elham</creatorcontrib><creatorcontrib>GEORGIADIS, Georgios</creatorcontrib><creatorcontrib>DENG, Weiran</creatorcontrib><title>NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING</title><description>A recurrent neural network that predicts blood glucose level includes a first long short-term memory (LSTM) network and a second LSTM network. The first LSTM network may include an input to receive near-infrared (NIR) radiation data and includes an output. The second LSTM network may include an input to receive the output of the first LSTM network and an output to output blood glucose level data based on the NIR radiation data input to the first LSTM network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD1c3UM0vX0cwtyDHJ1UQgOcHUOCfIPdvYPiFTQ8PMM0lRwcgwGSrj7hDr7B7sqBABVeTqHePr7KYQGe_q5K7i4ugYo-AAN8QPyeBhY0xJzilN5oTQ3g7Kba4izh25qQX58anFBYnJqXmpJfGiwkQEQWhpbWBg5GhoTpwoAkVQvDA</recordid><startdate>20200917</startdate><enddate>20200917</enddate><creator>LIU, Liu</creator><creator>SAKHAEE, Elham</creator><creator>GEORGIADIS, Georgios</creator><creator>DENG, Weiran</creator><scope>EVB</scope></search><sort><creationdate>20200917</creationdate><title>NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING</title><author>LIU, Liu ; SAKHAEE, Elham ; GEORGIADIS, Georgios ; DENG, Weiran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020293882A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU, Liu</creatorcontrib><creatorcontrib>SAKHAEE, Elham</creatorcontrib><creatorcontrib>GEORGIADIS, Georgios</creatorcontrib><creatorcontrib>DENG, Weiran</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU, Liu</au><au>SAKHAEE, Elham</au><au>GEORGIADIS, Georgios</au><au>DENG, Weiran</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING</title><date>2020-09-17</date><risdate>2020</risdate><abstract>A recurrent neural network that predicts blood glucose level includes a first long short-term memory (LSTM) network and a second LSTM network. The first LSTM network may include an input to receive near-infrared (NIR) radiation data and includes an output. The second LSTM network may include an input to receive the output of the first LSTM network and an output to output blood glucose level data based on the NIR radiation data input to the first LSTM network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020293882A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title NEAR-INFRARED SPECTROSCOPY (NIR) BASED GLUCOSE PREDICTION USING DEEP LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A13%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU,%20Liu&rft.date=2020-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020293882A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true