GAS TURBINE ENGINE
In a gas turbine engine, an inside turn duct portion and a nozzle guide vane are engaged together via an engagement part. An axially forward-facing load acting on a reverse flow combustor is transmitted to the vane via the engagement part. Therefore, it is possible to counteract an axially backward-...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Kamoi, Yasuhara Sawamura, Hiroshi |
description | In a gas turbine engine, an inside turn duct portion and a nozzle guide vane are engaged together via an engagement part. An axially forward-facing load acting on a reverse flow combustor is transmitted to the vane via the engagement part. Therefore, it is possible to counteract an axially backward-facing load acting on the vane from combustion gas with the axially forward-facing load, thus reducing a bending moment acting on a support part of the vane and enhancing durability. Furthermore, part of the axially forward-facing load acting on the combustor acts on the support part via the vane. The axially forward-facing load acting on the support part of the combustor without via the vane is decreased by the above-mentioned part. Thus, it is possible to reduce bending moments acting on an outside turn duct portion and dome portion of the combustor and enhance durability, thereby preventing degradation of combustion performance. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020284433A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020284433A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020284433A13</originalsourceid><addsrcrecordid>eNrjZBBydwxWCAkNcvL0c1Vw9XMHUjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MgACC1MTIyNHQ2NiVMFAKYWHs8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GAS TURBINE ENGINE</title><source>esp@cenet</source><creator>Kamoi, Yasuhara ; Sawamura, Hiroshi</creator><creatorcontrib>Kamoi, Yasuhara ; Sawamura, Hiroshi</creatorcontrib><description>In a gas turbine engine, an inside turn duct portion and a nozzle guide vane are engaged together via an engagement part. An axially forward-facing load acting on a reverse flow combustor is transmitted to the vane via the engagement part. Therefore, it is possible to counteract an axially backward-facing load acting on the vane from combustion gas with the axially forward-facing load, thus reducing a bending moment acting on a support part of the vane and enhancing durability. Furthermore, part of the axially forward-facing load acting on the combustor acts on the support part via the vane. The axially forward-facing load acting on the support part of the combustor without via the vane is decreased by the above-mentioned part. Thus, it is possible to reduce bending moments acting on an outside turn duct portion and dome portion of the combustor and enhance durability, thereby preventing degradation of combustion performance.</description><language>eng</language><subject>BLASTING ; COMBUSTION APPARATUS ; COMBUSTION PROCESSES ; GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS ; HEATING ; LIGHTING ; MECHANICAL ENGINEERING ; WEAPONS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200910&DB=EPODOC&CC=US&NR=2020284433A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200910&DB=EPODOC&CC=US&NR=2020284433A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Kamoi, Yasuhara</creatorcontrib><creatorcontrib>Sawamura, Hiroshi</creatorcontrib><title>GAS TURBINE ENGINE</title><description>In a gas turbine engine, an inside turn duct portion and a nozzle guide vane are engaged together via an engagement part. An axially forward-facing load acting on a reverse flow combustor is transmitted to the vane via the engagement part. Therefore, it is possible to counteract an axially backward-facing load acting on the vane from combustion gas with the axially forward-facing load, thus reducing a bending moment acting on a support part of the vane and enhancing durability. Furthermore, part of the axially forward-facing load acting on the combustor acts on the support part via the vane. The axially forward-facing load acting on the support part of the combustor without via the vane is decreased by the above-mentioned part. Thus, it is possible to reduce bending moments acting on an outside turn duct portion and dome portion of the combustor and enhance durability, thereby preventing degradation of combustion performance.</description><subject>BLASTING</subject><subject>COMBUSTION APPARATUS</subject><subject>COMBUSTION PROCESSES</subject><subject>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</subject><subject>HEATING</subject><subject>LIGHTING</subject><subject>MECHANICAL ENGINEERING</subject><subject>WEAPONS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBBydwxWCAkNcvL0c1Vw9XMHUjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MgACC1MTIyNHQ2NiVMFAKYWHs8</recordid><startdate>20200910</startdate><enddate>20200910</enddate><creator>Kamoi, Yasuhara</creator><creator>Sawamura, Hiroshi</creator><scope>EVB</scope></search><sort><creationdate>20200910</creationdate><title>GAS TURBINE ENGINE</title><author>Kamoi, Yasuhara ; Sawamura, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020284433A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BLASTING</topic><topic>COMBUSTION APPARATUS</topic><topic>COMBUSTION PROCESSES</topic><topic>GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS</topic><topic>HEATING</topic><topic>LIGHTING</topic><topic>MECHANICAL ENGINEERING</topic><topic>WEAPONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Kamoi, Yasuhara</creatorcontrib><creatorcontrib>Sawamura, Hiroshi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kamoi, Yasuhara</au><au>Sawamura, Hiroshi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GAS TURBINE ENGINE</title><date>2020-09-10</date><risdate>2020</risdate><abstract>In a gas turbine engine, an inside turn duct portion and a nozzle guide vane are engaged together via an engagement part. An axially forward-facing load acting on a reverse flow combustor is transmitted to the vane via the engagement part. Therefore, it is possible to counteract an axially backward-facing load acting on the vane from combustion gas with the axially forward-facing load, thus reducing a bending moment acting on a support part of the vane and enhancing durability. Furthermore, part of the axially forward-facing load acting on the combustor acts on the support part via the vane. The axially forward-facing load acting on the support part of the combustor without via the vane is decreased by the above-mentioned part. Thus, it is possible to reduce bending moments acting on an outside turn duct portion and dome portion of the combustor and enhance durability, thereby preventing degradation of combustion performance.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020284433A1 |
source | esp@cenet |
subjects | BLASTING COMBUSTION APPARATUS COMBUSTION PROCESSES GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGHVELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS HEATING LIGHTING MECHANICAL ENGINEERING WEAPONS |
title | GAS TURBINE ENGINE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Kamoi,%20Yasuhara&rft.date=2020-09-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020284433A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |