STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR

Provided are stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, and a method of manufacturing the same. In the stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KIM, Jong Hee, KIM, Kwang Min, JO, Ki Hoon, SEO, Bo Sung
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KIM, Jong Hee
KIM, Kwang Min
JO, Ki Hoon
SEO, Bo Sung
description Provided are stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, and a method of manufacturing the same. In the stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, according to an embodiment of the present invention, a ratio of Cr hydroxide/Cr oxide included in a passivation film of the stainless steel ranges from 0.5 to 1.7, and the passivation film has a contact angle (θ) of 70° or less. Thus, not only corrosion resistance may be enhanced by removing a non-conductive film formed on a surface of the stainless steel and forming a new conductive film thereon, but hydrophilicity may also be secured without additional surface treatment such as a separate coating or the like, and thus manufacturing costs may be reduced and productivity may be increased.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020280075A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020280075A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020280075A13</originalsourceid><addsrcrecordid>eNqNTstKA0EQ3EsOov5Dg1cDqyLx2s7WOAPzoqc3sKcQZDxJDCT_5S86ET9A-tB0Pbrqaviuyj4F1EpVgUA2C1UUFlafE5XACsqWSg5LhBACjEo_OhwRX4UTyM7daRACOd769EY-FslbTOSWSXJxPnhDHSoQXYjTRCaL5HqJEFTfWySD-18mcpotG53l8ilCXZ5IHQS9282w-th_ntrt374e7izUuHU7fu3a6bh_b4d23s31cezzMo6bZ354-p_qBz53Spw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR</title><source>esp@cenet</source><creator>KIM, Jong Hee ; KIM, Kwang Min ; JO, Ki Hoon ; SEO, Bo Sung</creator><creatorcontrib>KIM, Jong Hee ; KIM, Kwang Min ; JO, Ki Hoon ; SEO, Bo Sung</creatorcontrib><description>Provided are stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, and a method of manufacturing the same. In the stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, according to an embodiment of the present invention, a ratio of Cr hydroxide/Cr oxide included in a passivation film of the stainless steel ranges from 0.5 to 1.7, and the passivation film has a contact angle (θ) of 70° or less. Thus, not only corrosion resistance may be enhanced by removing a non-conductive film formed on a surface of the stainless steel and forming a new conductive film thereon, but hydrophilicity may also be secured without additional surface treatment such as a separate coating or the like, and thus manufacturing costs may be reduced and productivity may be increased.</description><language>eng</language><subject>ALLOYS ; APPARATUS THEREFOR ; BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ; FERROUS OR NON-FERROUS ALLOYS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 ; NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE ; PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROMOBJECTS ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200903&amp;DB=EPODOC&amp;CC=US&amp;NR=2020280075A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200903&amp;DB=EPODOC&amp;CC=US&amp;NR=2020280075A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KIM, Jong Hee</creatorcontrib><creatorcontrib>KIM, Kwang Min</creatorcontrib><creatorcontrib>JO, Ki Hoon</creatorcontrib><creatorcontrib>SEO, Bo Sung</creatorcontrib><title>STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR</title><description>Provided are stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, and a method of manufacturing the same. In the stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, according to an embodiment of the present invention, a ratio of Cr hydroxide/Cr oxide included in a passivation film of the stainless steel ranges from 0.5 to 1.7, and the passivation film has a contact angle (θ) of 70° or less. Thus, not only corrosion resistance may be enhanced by removing a non-conductive film formed on a surface of the stainless steel and forming a new conductive film thereon, but hydrophilicity may also be secured without additional surface treatment such as a separate coating or the like, and thus manufacturing costs may be reduced and productivity may be increased.</description><subject>ALLOYS</subject><subject>APPARATUS THEREFOR</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</subject><subject>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><subject>PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROMOBJECTS</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNTstKA0EQ3EsOov5Dg1cDqyLx2s7WOAPzoqc3sKcQZDxJDCT_5S86ET9A-tB0Pbrqaviuyj4F1EpVgUA2C1UUFlafE5XACsqWSg5LhBACjEo_OhwRX4UTyM7daRACOd769EY-FslbTOSWSXJxPnhDHSoQXYjTRCaL5HqJEFTfWySD-18mcpotG53l8ilCXZ5IHQS9282w-th_ntrt374e7izUuHU7fu3a6bh_b4d23s31cezzMo6bZ354-p_qBz53Spw</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>KIM, Jong Hee</creator><creator>KIM, Kwang Min</creator><creator>JO, Ki Hoon</creator><creator>SEO, Bo Sung</creator><scope>EVB</scope></search><sort><creationdate>20200903</creationdate><title>STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR</title><author>KIM, Jong Hee ; KIM, Kwang Min ; JO, Ki Hoon ; SEO, Bo Sung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020280075A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ALLOYS</topic><topic>APPARATUS THEREFOR</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</topic><topic>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</topic><topic>PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROMOBJECTS</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>KIM, Jong Hee</creatorcontrib><creatorcontrib>KIM, Kwang Min</creatorcontrib><creatorcontrib>JO, Ki Hoon</creatorcontrib><creatorcontrib>SEO, Bo Sung</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KIM, Jong Hee</au><au>KIM, Kwang Min</au><au>JO, Ki Hoon</au><au>SEO, Bo Sung</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR</title><date>2020-09-03</date><risdate>2020</risdate><abstract>Provided are stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, and a method of manufacturing the same. In the stainless steel for a separator of a polymer electrolyte membrane fuel cell, which exhibits enhanced hydrophilicity and enhanced corrosion resistance, according to an embodiment of the present invention, a ratio of Cr hydroxide/Cr oxide included in a passivation film of the stainless steel ranges from 0.5 to 1.7, and the passivation film has a contact angle (θ) of 70° or less. Thus, not only corrosion resistance may be enhanced by removing a non-conductive film formed on a surface of the stainless steel and forming a new conductive film thereon, but hydrophilicity may also be secured without additional surface treatment such as a separate coating or the like, and thus manufacturing costs may be reduced and productivity may be increased.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020280075A1
source esp@cenet
subjects ALLOYS
APPARATUS THEREFOR
BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRICITY
ELECTROLYTIC OR ELECTROPHORETIC PROCESSES
FERROUS OR NON-FERROUS ALLOYS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE
PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROMOBJECTS
PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TREATMENT OF ALLOYS OR NON-FERROUS METALS
title STAINLESS STEEL FOR SEPARATION PLATE OF POLYMER ELECTROLYTE MEMBRANE FUEL CELL HAVING IMPROVED HYDROPHILIC PROPERTY AND CORROSION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KIM,%20Jong%20Hee&rft.date=2020-09-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020280075A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true