ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS

An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, the method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LV, Youchao, Zhao, Pengfei, Wang, Erbin, Liu, Chang, Cao, Jun, Zang, Kaifeng
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LV, Youchao
Zhao, Pengfei
Wang, Erbin
Liu, Chang
Cao, Jun
Zang, Kaifeng
description An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, the method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020260979A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020260979A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020260979A13</originalsourceid><addsrcrecordid>eNqNisEKgkAQhr10iOodFjwLVlB4nHZHHZhW2RkPnkRqO0UJ9v7koQeIn4-PD_51coegVJIlYENekZkq9BaNIJcZIwRPvsouIOiMKChZg4xWQ2MhOGqqAG3dG_DAvZCYK2rduKUX2hYCaCfbZPUYn3Pc_bxJ0hLV1lmc3kOcp_EWX_EzdHLIl53y4lzA_vjf6wtD4TXD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><source>esp@cenet</source><creator>LV, Youchao ; Zhao, Pengfei ; Wang, Erbin ; Liu, Chang ; Cao, Jun ; Zang, Kaifeng</creator><creatorcontrib>LV, Youchao ; Zhao, Pengfei ; Wang, Erbin ; Liu, Chang ; Cao, Jun ; Zang, Kaifeng</creatorcontrib><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, the method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><language>eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200820&amp;DB=EPODOC&amp;CC=US&amp;NR=2020260979A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200820&amp;DB=EPODOC&amp;CC=US&amp;NR=2020260979A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>Zhao, Pengfei</creatorcontrib><creatorcontrib>Wang, Erbin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><creatorcontrib>Zang, Kaifeng</creatorcontrib><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><description>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, the method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKgkAQhr10iOodFjwLVlB4nHZHHZhW2RkPnkRqO0UJ9v7koQeIn4-PD_51coegVJIlYENekZkq9BaNIJcZIwRPvsouIOiMKChZg4xWQ2MhOGqqAG3dG_DAvZCYK2rduKUX2hYCaCfbZPUYn3Pc_bxJ0hLV1lmc3kOcp_EWX_EzdHLIl53y4lzA_vjf6wtD4TXD</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>LV, Youchao</creator><creator>Zhao, Pengfei</creator><creator>Wang, Erbin</creator><creator>Liu, Chang</creator><creator>Cao, Jun</creator><creator>Zang, Kaifeng</creator><scope>EVB</scope></search><sort><creationdate>20200820</creationdate><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><author>LV, Youchao ; Zhao, Pengfei ; Wang, Erbin ; Liu, Chang ; Cao, Jun ; Zang, Kaifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020260979A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>LV, Youchao</creatorcontrib><creatorcontrib>Zhao, Pengfei</creatorcontrib><creatorcontrib>Wang, Erbin</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><creatorcontrib>Zang, Kaifeng</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LV, Youchao</au><au>Zhao, Pengfei</au><au>Wang, Erbin</au><au>Liu, Chang</au><au>Cao, Jun</au><au>Zang, Kaifeng</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS</title><date>2020-08-20</date><risdate>2020</risdate><abstract>An artificial intelligence self-learning-based static electrocardiography analysis method and apparatus, the method comprising data preprocessing, heartbeat detection, heartbeat classification based on a depth learning method, heartbeat verification, heartbeat waveform feature detection, measurement and analysis of electrocardiography events, and finally automatic output of reporting data, realizing an automated static electrocardiograph analysis method having a complete and rapid flow. The static electrocardiography analysis method can also record modification information of an automatic analysis result, collect modified data, and feed same back to the depth learning model to continue training, thereby continuously making improvements and improving the accuracy of the automatic analysis method.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020260979A1
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title ARTIFICIAL INTELLIGENCE SELF-LEARNING-BASED STATIC ELECTROCARDIOGRAPHY ANALYSIS METHOD AND APPARATUS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LV,%20Youchao&rft.date=2020-08-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020260979A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true