OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE
Methods, apparatuses and computer readable medium are presented for generating a natural language model. A method for generating a natural language model comprises: selecting from a pool of documents, a first set of documents to be annotated; receiving annotations of the first set of documents elici...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Erle, Schuyler D Brenier, Jason Saxena, Tripti Tepper, Paul A Basavaraj, Veena Schnoebelen, Tyler J King, Gary C Krawczyk, Stefan Munro, Robert J Long, Jessica D Callahan, Brendan D |
description | Methods, apparatuses and computer readable medium are presented for generating a natural language model. A method for generating a natural language model comprises: selecting from a pool of documents, a first set of documents to be annotated; receiving annotations of the first set of documents elicited by first human readable prompts; training a natural language model using the annotated first set of documents; determining documents in the pool having uncertain natural language processing results according to the trained natural language model and/or the received annotations; selecting from the pool of documents, a second set of documents to be annotated comprising documents having uncertain natural language processing results; receiving annotations of the second set of documents elicited by second human readable prompts; and retraining a natural language model using the annotated second set of documents. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020234002A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020234002A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020234002A13</originalsourceid><addsrcrecordid>eNrjZDD2Dwjx9PWMcgzx9PdTCHF19vDzDAx1DVZw8w9ScAwK8XTzdPZ09FHw9Atx9fHxdHf1c3blYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkBobGJgYORoaEycKgBmeig-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE</title><source>esp@cenet</source><creator>Erle, Schuyler D ; Brenier, Jason ; Saxena, Tripti ; Tepper, Paul A ; Basavaraj, Veena ; Schnoebelen, Tyler J ; King, Gary C ; Krawczyk, Stefan ; Munro, Robert J ; Long, Jessica D ; Callahan, Brendan D</creator><creatorcontrib>Erle, Schuyler D ; Brenier, Jason ; Saxena, Tripti ; Tepper, Paul A ; Basavaraj, Veena ; Schnoebelen, Tyler J ; King, Gary C ; Krawczyk, Stefan ; Munro, Robert J ; Long, Jessica D ; Callahan, Brendan D</creatorcontrib><description>Methods, apparatuses and computer readable medium are presented for generating a natural language model. A method for generating a natural language model comprises: selecting from a pool of documents, a first set of documents to be annotated; receiving annotations of the first set of documents elicited by first human readable prompts; training a natural language model using the annotated first set of documents; determining documents in the pool having uncertain natural language processing results according to the trained natural language model and/or the received annotations; selecting from the pool of documents, a second set of documents to be annotated comprising documents having uncertain natural language processing results; receiving annotations of the second set of documents elicited by second human readable prompts; and retraining a natural language model using the annotated second set of documents.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200723&DB=EPODOC&CC=US&NR=2020234002A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200723&DB=EPODOC&CC=US&NR=2020234002A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Erle, Schuyler D</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Krawczyk, Stefan</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><title>OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE</title><description>Methods, apparatuses and computer readable medium are presented for generating a natural language model. A method for generating a natural language model comprises: selecting from a pool of documents, a first set of documents to be annotated; receiving annotations of the first set of documents elicited by first human readable prompts; training a natural language model using the annotated first set of documents; determining documents in the pool having uncertain natural language processing results according to the trained natural language model and/or the received annotations; selecting from the pool of documents, a second set of documents to be annotated comprising documents having uncertain natural language processing results; receiving annotations of the second set of documents elicited by second human readable prompts; and retraining a natural language model using the annotated second set of documents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD2Dwjx9PWMcgzx9PdTCHF19vDzDAx1DVZw8w9ScAwK8XTzdPZ09FHw9Atx9fHxdHf1c3blYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkBobGJgYORoaEycKgBmeig-</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Erle, Schuyler D</creator><creator>Brenier, Jason</creator><creator>Saxena, Tripti</creator><creator>Tepper, Paul A</creator><creator>Basavaraj, Veena</creator><creator>Schnoebelen, Tyler J</creator><creator>King, Gary C</creator><creator>Krawczyk, Stefan</creator><creator>Munro, Robert J</creator><creator>Long, Jessica D</creator><creator>Callahan, Brendan D</creator><scope>EVB</scope></search><sort><creationdate>20200723</creationdate><title>OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE</title><author>Erle, Schuyler D ; Brenier, Jason ; Saxena, Tripti ; Tepper, Paul A ; Basavaraj, Veena ; Schnoebelen, Tyler J ; King, Gary C ; Krawczyk, Stefan ; Munro, Robert J ; Long, Jessica D ; Callahan, Brendan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020234002A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Erle, Schuyler D</creatorcontrib><creatorcontrib>Brenier, Jason</creatorcontrib><creatorcontrib>Saxena, Tripti</creatorcontrib><creatorcontrib>Tepper, Paul A</creatorcontrib><creatorcontrib>Basavaraj, Veena</creatorcontrib><creatorcontrib>Schnoebelen, Tyler J</creatorcontrib><creatorcontrib>King, Gary C</creatorcontrib><creatorcontrib>Krawczyk, Stefan</creatorcontrib><creatorcontrib>Munro, Robert J</creatorcontrib><creatorcontrib>Long, Jessica D</creatorcontrib><creatorcontrib>Callahan, Brendan D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Erle, Schuyler D</au><au>Brenier, Jason</au><au>Saxena, Tripti</au><au>Tepper, Paul A</au><au>Basavaraj, Veena</au><au>Schnoebelen, Tyler J</au><au>King, Gary C</au><au>Krawczyk, Stefan</au><au>Munro, Robert J</au><au>Long, Jessica D</au><au>Callahan, Brendan D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE</title><date>2020-07-23</date><risdate>2020</risdate><abstract>Methods, apparatuses and computer readable medium are presented for generating a natural language model. A method for generating a natural language model comprises: selecting from a pool of documents, a first set of documents to be annotated; receiving annotations of the first set of documents elicited by first human readable prompts; training a natural language model using the annotated first set of documents; determining documents in the pool having uncertain natural language processing results according to the trained natural language model and/or the received annotations; selecting from the pool of documents, a second set of documents to be annotated comprising documents having uncertain natural language processing results; receiving annotations of the second set of documents elicited by second human readable prompts; and retraining a natural language model using the annotated second set of documents.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020234002A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | OPTIMIZATION TECHNIQUES FOR ARTIFICIAL INTELLIGENCE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T05%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Erle,%20Schuyler%20D&rft.date=2020-07-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020234002A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |