EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM

In an embodiment, a computer-implemented method for efficient execution of a trained neural network using a database system, the trained neural network comprising a plurality of layers each comprising weight values and bias values and programmed at each of the layers to execute an affine transformat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MILLER, KENTON, SHAH, SAMIR, ZHANG, BEI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MILLER, KENTON
SHAH, SAMIR
ZHANG, BEI
description In an embodiment, a computer-implemented method for efficient execution of a trained neural network using a database system, the trained neural network comprising a plurality of layers each comprising weight values and bias values and programmed at each of the layers to execute an affine transformation of an activation function and an input value, comprises: for a particular layer of the trained neural network, dividing the affine transformation input a plurality of transformation pieces; executing each of the transformation pieces to result in computed pieces and writing the computed pieces to a first database table; using one or more database queries, combining the computed pieces and applying the activation function to generate a set of output data; writing the output data to one of a plurality of different second database tables that respectively correspond to the layers; repeating the dividing, executing, combining, applying and writing for all layers of the trained neural network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020184311A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020184311A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020184311A13</originalsourceid><addsrcrecordid>eNrjZLBxjXB1Dg3x9PdT8HdTCAly9PRzdVHwcw0NcvQBUiHh_kHewQqhwZ5-7gqOCi6OIY5OjsGuCsGRwSGuvjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMDQwsTY0NDR0Jg4VQCxySp4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM</title><source>esp@cenet</source><creator>MILLER, KENTON ; SHAH, SAMIR ; ZHANG, BEI</creator><creatorcontrib>MILLER, KENTON ; SHAH, SAMIR ; ZHANG, BEI</creatorcontrib><description>In an embodiment, a computer-implemented method for efficient execution of a trained neural network using a database system, the trained neural network comprising a plurality of layers each comprising weight values and bias values and programmed at each of the layers to execute an affine transformation of an activation function and an input value, comprises: for a particular layer of the trained neural network, dividing the affine transformation input a plurality of transformation pieces; executing each of the transformation pieces to result in computed pieces and writing the computed pieces to a first database table; using one or more database queries, combining the computed pieces and applying the activation function to generate a set of output data; writing the output data to one of a plurality of different second database tables that respectively correspond to the layers; repeating the dividing, executing, combining, applying and writing for all layers of the trained neural network.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200611&amp;DB=EPODOC&amp;CC=US&amp;NR=2020184311A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200611&amp;DB=EPODOC&amp;CC=US&amp;NR=2020184311A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MILLER, KENTON</creatorcontrib><creatorcontrib>SHAH, SAMIR</creatorcontrib><creatorcontrib>ZHANG, BEI</creatorcontrib><title>EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM</title><description>In an embodiment, a computer-implemented method for efficient execution of a trained neural network using a database system, the trained neural network comprising a plurality of layers each comprising weight values and bias values and programmed at each of the layers to execute an affine transformation of an activation function and an input value, comprises: for a particular layer of the trained neural network, dividing the affine transformation input a plurality of transformation pieces; executing each of the transformation pieces to result in computed pieces and writing the computed pieces to a first database table; using one or more database queries, combining the computed pieces and applying the activation function to generate a set of output data; writing the output data to one of a plurality of different second database tables that respectively correspond to the layers; repeating the dividing, executing, combining, applying and writing for all layers of the trained neural network.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxjXB1Dg3x9PdT8HdTCAly9PRzdVHwcw0NcvQBUiHh_kHewQqhwZ5-7gqOCi6OIY5OjsGuCsGRwSGuvjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjAyMDQwsTY0NDR0Jg4VQCxySp4</recordid><startdate>20200611</startdate><enddate>20200611</enddate><creator>MILLER, KENTON</creator><creator>SHAH, SAMIR</creator><creator>ZHANG, BEI</creator><scope>EVB</scope></search><sort><creationdate>20200611</creationdate><title>EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM</title><author>MILLER, KENTON ; SHAH, SAMIR ; ZHANG, BEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020184311A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MILLER, KENTON</creatorcontrib><creatorcontrib>SHAH, SAMIR</creatorcontrib><creatorcontrib>ZHANG, BEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MILLER, KENTON</au><au>SHAH, SAMIR</au><au>ZHANG, BEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM</title><date>2020-06-11</date><risdate>2020</risdate><abstract>In an embodiment, a computer-implemented method for efficient execution of a trained neural network using a database system, the trained neural network comprising a plurality of layers each comprising weight values and bias values and programmed at each of the layers to execute an affine transformation of an activation function and an input value, comprises: for a particular layer of the trained neural network, dividing the affine transformation input a plurality of transformation pieces; executing each of the transformation pieces to result in computed pieces and writing the computed pieces to a first database table; using one or more database queries, combining the computed pieces and applying the activation function to generate a set of output data; writing the output data to one of a plurality of different second database tables that respectively correspond to the layers; repeating the dividing, executing, combining, applying and writing for all layers of the trained neural network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020184311A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title EXECUTION OF TRAINED NEURAL NETWORKS USING A DATABASE SYSTEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A51%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MILLER,%20KENTON&rft.date=2020-06-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020184311A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true