SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS

A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sun, Eric Li, Wentzel, Marthinus Coenraad De Clercq, Dirac, Leo Parker, Kumar, Pramod Ravikumar, Balaji, Bharathan, Townsend, Brian James, Genc, Sahika, Mallya Kasaragod, Sunil
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sun, Eric Li
Wentzel, Marthinus Coenraad De Clercq
Dirac, Leo Parker
Kumar, Pramod Ravikumar
Balaji, Bharathan
Townsend, Brian James
Genc, Sahika
Mallya Kasaragod, Sunil
description A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020167437A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020167437A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020167437A13</originalsourceid><addsrcrecordid>eNrjZHAO9vQN9XEM8fT3U_APcvZwDQ4JgvDc_IMUgGxPP08_d4UgV08_oICzq6-rX4iCj6tjEFjY19_F1SeYh4E1LTGnOJUXSnMzKLu5hjh76KYW5MenFhckJqfmpZbEhwYbGRgZGJqZmxibOxoaE6cKACJMLPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><source>esp@cenet</source><creator>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</creator><creatorcontrib>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</creatorcontrib><description>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200528&amp;DB=EPODOC&amp;CC=US&amp;NR=2020167437A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200528&amp;DB=EPODOC&amp;CC=US&amp;NR=2020167437A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sun, Eric Li</creatorcontrib><creatorcontrib>Wentzel, Marthinus Coenraad De Clercq</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Kumar, Pramod Ravikumar</creatorcontrib><creatorcontrib>Balaji, Bharathan</creatorcontrib><creatorcontrib>Townsend, Brian James</creatorcontrib><creatorcontrib>Genc, Sahika</creatorcontrib><creatorcontrib>Mallya Kasaragod, Sunil</creatorcontrib><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><description>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAO9vQN9XEM8fT3U_APcvZwDQ4JgvDc_IMUgGxPP08_d4UgV08_oICzq6-rX4iCj6tjEFjY19_F1SeYh4E1LTGnOJUXSnMzKLu5hjh76KYW5MenFhckJqfmpZbEhwYbGRgZGJqZmxibOxoaE6cKACJMLPA</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Sun, Eric Li</creator><creator>Wentzel, Marthinus Coenraad De Clercq</creator><creator>Dirac, Leo Parker</creator><creator>Kumar, Pramod Ravikumar</creator><creator>Balaji, Bharathan</creator><creator>Townsend, Brian James</creator><creator>Genc, Sahika</creator><creator>Mallya Kasaragod, Sunil</creator><scope>EVB</scope></search><sort><creationdate>20200528</creationdate><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><author>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020167437A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Eric Li</creatorcontrib><creatorcontrib>Wentzel, Marthinus Coenraad De Clercq</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Kumar, Pramod Ravikumar</creatorcontrib><creatorcontrib>Balaji, Bharathan</creatorcontrib><creatorcontrib>Townsend, Brian James</creatorcontrib><creatorcontrib>Genc, Sahika</creatorcontrib><creatorcontrib>Mallya Kasaragod, Sunil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Eric Li</au><au>Wentzel, Marthinus Coenraad De Clercq</au><au>Dirac, Leo Parker</au><au>Kumar, Pramod Ravikumar</au><au>Balaji, Bharathan</au><au>Townsend, Brian James</au><au>Genc, Sahika</au><au>Mallya Kasaragod, Sunil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><date>2020-05-28</date><risdate>2020</risdate><abstract>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020167437A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sun,%20Eric%20Li&rft.date=2020-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020167437A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true