SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS
A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includ...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sun, Eric Li Wentzel, Marthinus Coenraad De Clercq Dirac, Leo Parker Kumar, Pramod Ravikumar Balaji, Bharathan Townsend, Brian James Genc, Sahika Mallya Kasaragod, Sunil |
description | A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020167437A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020167437A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020167437A13</originalsourceid><addsrcrecordid>eNrjZHAO9vQN9XEM8fT3U_APcvZwDQ4JgvDc_IMUgGxPP08_d4UgV08_oICzq6-rX4iCj6tjEFjY19_F1SeYh4E1LTGnOJUXSnMzKLu5hjh76KYW5MenFhckJqfmpZbEhwYbGRgZGJqZmxibOxoaE6cKACJMLPA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><source>esp@cenet</source><creator>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</creator><creatorcontrib>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</creatorcontrib><description>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200528&DB=EPODOC&CC=US&NR=2020167437A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200528&DB=EPODOC&CC=US&NR=2020167437A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sun, Eric Li</creatorcontrib><creatorcontrib>Wentzel, Marthinus Coenraad De Clercq</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Kumar, Pramod Ravikumar</creatorcontrib><creatorcontrib>Balaji, Bharathan</creatorcontrib><creatorcontrib>Townsend, Brian James</creatorcontrib><creatorcontrib>Genc, Sahika</creatorcontrib><creatorcontrib>Mallya Kasaragod, Sunil</creatorcontrib><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><description>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAO9vQN9XEM8fT3U_APcvZwDQ4JgvDc_IMUgGxPP08_d4UgV08_oICzq6-rX4iCj6tjEFjY19_F1SeYh4E1LTGnOJUXSnMzKLu5hjh76KYW5MenFhckJqfmpZbEhwYbGRgZGJqZmxibOxoaE6cKACJMLPA</recordid><startdate>20200528</startdate><enddate>20200528</enddate><creator>Sun, Eric Li</creator><creator>Wentzel, Marthinus Coenraad De Clercq</creator><creator>Dirac, Leo Parker</creator><creator>Kumar, Pramod Ravikumar</creator><creator>Balaji, Bharathan</creator><creator>Townsend, Brian James</creator><creator>Genc, Sahika</creator><creator>Mallya Kasaragod, Sunil</creator><scope>EVB</scope></search><sort><creationdate>20200528</creationdate><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><author>Sun, Eric Li ; Wentzel, Marthinus Coenraad De Clercq ; Dirac, Leo Parker ; Kumar, Pramod Ravikumar ; Balaji, Bharathan ; Townsend, Brian James ; Genc, Sahika ; Mallya Kasaragod, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020167437A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sun, Eric Li</creatorcontrib><creatorcontrib>Wentzel, Marthinus Coenraad De Clercq</creatorcontrib><creatorcontrib>Dirac, Leo Parker</creatorcontrib><creatorcontrib>Kumar, Pramod Ravikumar</creatorcontrib><creatorcontrib>Balaji, Bharathan</creatorcontrib><creatorcontrib>Townsend, Brian James</creatorcontrib><creatorcontrib>Genc, Sahika</creatorcontrib><creatorcontrib>Mallya Kasaragod, Sunil</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Eric Li</au><au>Wentzel, Marthinus Coenraad De Clercq</au><au>Dirac, Leo Parker</au><au>Kumar, Pramod Ravikumar</au><au>Balaji, Bharathan</au><au>Townsend, Brian James</au><au>Genc, Sahika</au><au>Mallya Kasaragod, Sunil</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS</title><date>2020-05-28</date><risdate>2020</risdate><abstract>A simulation workflow manager obtains a set of parameters for simulation of a system and training of a reinforcement learning model for optimizing an application of the system. In response to obtaining the set of parameters, the simulation workflow manager configures a first compute node that includes a training application for training the reinforcement learning model. The simulation workflow manager also configures a second compute note with a simulation application to perform the simulation of the system in a simulation environment. Data is generated through execution of the simulation in the second compute node that is provided to the first compute node to cause the training application to use the data to train the reinforcement learning model.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020167437A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | SIMULATION ORCHESTRATION FOR TRAINING REINFORCEMENT LEARNING MODELS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A07%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sun,%20Eric%20Li&rft.date=2020-05-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020167437A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |