AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS
An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identifi...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | V V GANESHAN, Kavita SHIVARAM, Madhura KALIKI, Aishwarya SURESH, Namratha SONI, Soujanya VARUGHESE, Libin |
description | An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020159571A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020159571A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020159571A13</originalsourceid><addsrcrecordid>eNrjZDBzDA3x93UM8XRWcHEMcVQICXL0C3bzDwIJ-fsFKwCZCgFB_s6uwcEKMKVAcR4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGBoamlqbuhoaEycKgDp1ClW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><source>esp@cenet</source><creator>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</creator><creatorcontrib>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</creatorcontrib><description>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200521&DB=EPODOC&CC=US&NR=2020159571A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200521&DB=EPODOC&CC=US&NR=2020159571A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>V V GANESHAN, Kavita</creatorcontrib><creatorcontrib>SHIVARAM, Madhura</creatorcontrib><creatorcontrib>KALIKI, Aishwarya</creatorcontrib><creatorcontrib>SURESH, Namratha</creatorcontrib><creatorcontrib>SONI, Soujanya</creatorcontrib><creatorcontrib>VARUGHESE, Libin</creatorcontrib><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><description>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBzDA3x93UM8XRWcHEMcVQICXL0C3bzDwIJ-fsFKwCZCgFB_s6uwcEKMKVAcR4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGBoamlqbuhoaEycKgDp1ClW</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>V V GANESHAN, Kavita</creator><creator>SHIVARAM, Madhura</creator><creator>KALIKI, Aishwarya</creator><creator>SURESH, Namratha</creator><creator>SONI, Soujanya</creator><creator>VARUGHESE, Libin</creator><scope>EVB</scope></search><sort><creationdate>20200521</creationdate><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><author>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020159571A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>V V GANESHAN, Kavita</creatorcontrib><creatorcontrib>SHIVARAM, Madhura</creatorcontrib><creatorcontrib>KALIKI, Aishwarya</creatorcontrib><creatorcontrib>SURESH, Namratha</creatorcontrib><creatorcontrib>SONI, Soujanya</creatorcontrib><creatorcontrib>VARUGHESE, Libin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>V V GANESHAN, Kavita</au><au>SHIVARAM, Madhura</au><au>KALIKI, Aishwarya</au><au>SURESH, Namratha</au><au>SONI, Soujanya</au><au>VARUGHESE, Libin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><date>2020-05-21</date><risdate>2020</risdate><abstract>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020159571A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=V%20V%20GANESHAN,%20Kavita&rft.date=2020-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020159571A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |