AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS

An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: V V GANESHAN, Kavita, SHIVARAM, Madhura, KALIKI, Aishwarya, SURESH, Namratha, SONI, Soujanya, VARUGHESE, Libin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator V V GANESHAN, Kavita
SHIVARAM, Madhura
KALIKI, Aishwarya
SURESH, Namratha
SONI, Soujanya
VARUGHESE, Libin
description An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020159571A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020159571A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020159571A13</originalsourceid><addsrcrecordid>eNrjZDBzDA3x93UM8XRWcHEMcVQICXL0C3bzDwIJ-fsFKwCZCgFB_s6uwcEKMKVAcR4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGBoamlqbuhoaEycKgDp1ClW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><source>esp@cenet</source><creator>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</creator><creatorcontrib>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</creatorcontrib><description>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200521&amp;DB=EPODOC&amp;CC=US&amp;NR=2020159571A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200521&amp;DB=EPODOC&amp;CC=US&amp;NR=2020159571A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>V V GANESHAN, Kavita</creatorcontrib><creatorcontrib>SHIVARAM, Madhura</creatorcontrib><creatorcontrib>KALIKI, Aishwarya</creatorcontrib><creatorcontrib>SURESH, Namratha</creatorcontrib><creatorcontrib>SONI, Soujanya</creatorcontrib><creatorcontrib>VARUGHESE, Libin</creatorcontrib><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><description>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBzDA3x93UM8XRWcHEMcVQICXL0C3bzDwIJ-fsFKwCZCgFB_s6uwcEKMKVAcR4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh8abGRgZGBoamlqbuhoaEycKgDp1ClW</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>V V GANESHAN, Kavita</creator><creator>SHIVARAM, Madhura</creator><creator>KALIKI, Aishwarya</creator><creator>SURESH, Namratha</creator><creator>SONI, Soujanya</creator><creator>VARUGHESE, Libin</creator><scope>EVB</scope></search><sort><creationdate>20200521</creationdate><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><author>V V GANESHAN, Kavita ; SHIVARAM, Madhura ; KALIKI, Aishwarya ; SURESH, Namratha ; SONI, Soujanya ; VARUGHESE, Libin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020159571A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>V V GANESHAN, Kavita</creatorcontrib><creatorcontrib>SHIVARAM, Madhura</creatorcontrib><creatorcontrib>KALIKI, Aishwarya</creatorcontrib><creatorcontrib>SURESH, Namratha</creatorcontrib><creatorcontrib>SONI, Soujanya</creatorcontrib><creatorcontrib>VARUGHESE, Libin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>V V GANESHAN, Kavita</au><au>SHIVARAM, Madhura</au><au>KALIKI, Aishwarya</au><au>SURESH, Namratha</au><au>SONI, Soujanya</au><au>VARUGHESE, Libin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS</title><date>2020-05-21</date><risdate>2020</risdate><abstract>An Artificial Intelligence (AI) based data transformation system receives a process document and automatically generates processor-executable code which enables automatic execution of a process as detailed within the process document. Various structural elements of the process documents are identified and the data from the document is clustered based on common parameters which can include the structural elements or textual data from the process document. The contextual information including conditional and non-conditional statements along with the entities and entity attributes are also obtained. The domain knowledge is superimposed on the contextual information to generate flows that represent procedures which make up the process to be automated. Platform specific code for the automatic execution of the process is automatically generated from the flows.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020159571A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title AUTOMATIC DATA TRANSFORMATIONS FOR PROCESS AUTOMATIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A28%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=V%20V%20GANESHAN,%20Kavita&rft.date=2020-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020159571A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true