DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING
A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce modeling results such as f...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HALEY, TIMOTHY PATRICK HODGIN, RON TRAVIS HELMKAMP, PHILLIP MARK FRAZIER, MACKLIN CARTER KIM, SANGMIN CHIEN, YUNG-HSIN BRZEZICKI, JERZY MICHAL TROVERO, MICHELE ANGELO XIE, JINGRUI SOLOMONSON, RANDY THOMAS MILLS, STEVEN CHRISTOPHER LI, YUE |
description | A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce modeling results such as forecasts of the time series. The pipeline includes a segmentation operation for categorizing the time series into multiple demand classes based on demand characteristics of the time series. The pipeline also includes multiple sub-pipelines corresponding to the multiple demand classes. Each of the sub-pipelines applies a model strategy to the time series in the corresponding demand class. The model strategy is selected from multiple candidate model strategies based on predetermined relationships between the demand classes and the candidate model strategies. The pipeline is executed to determine the modeling results for the time series. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020143246A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020143246A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020143246A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4FzoU2L-5lc9CBJS-8cnEqROIkW6vsjgg_g9MPHvy6Co4jJgQ0owp4tKncJjijkoOeeAicCuYpSBN8NoBypFBqYBBwqfpEsinI6bYvVfXoseffrpth7Unsu8_wa8zJPt_zM7_EipjJV3TamPWDd_Hd9AGZeLsM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING</title><source>esp@cenet</source><creator>HALEY, TIMOTHY PATRICK ; HODGIN, RON TRAVIS ; HELMKAMP, PHILLIP MARK ; FRAZIER, MACKLIN CARTER ; KIM, SANGMIN ; CHIEN, YUNG-HSIN ; BRZEZICKI, JERZY MICHAL ; TROVERO, MICHELE ANGELO ; XIE, JINGRUI ; SOLOMONSON, RANDY THOMAS ; MILLS, STEVEN CHRISTOPHER ; LI, YUE</creator><creatorcontrib>HALEY, TIMOTHY PATRICK ; HODGIN, RON TRAVIS ; HELMKAMP, PHILLIP MARK ; FRAZIER, MACKLIN CARTER ; KIM, SANGMIN ; CHIEN, YUNG-HSIN ; BRZEZICKI, JERZY MICHAL ; TROVERO, MICHELE ANGELO ; XIE, JINGRUI ; SOLOMONSON, RANDY THOMAS ; MILLS, STEVEN CHRISTOPHER ; LI, YUE</creatorcontrib><description>A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce modeling results such as forecasts of the time series. The pipeline includes a segmentation operation for categorizing the time series into multiple demand classes based on demand characteristics of the time series. The pipeline also includes multiple sub-pipelines corresponding to the multiple demand classes. Each of the sub-pipelines applies a model strategy to the time series in the corresponding demand class. The model strategy is selected from multiple candidate model strategies based on predetermined relationships between the demand classes and the candidate model strategies. The pipeline is executed to determine the modeling results for the time series.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200507&DB=EPODOC&CC=US&NR=2020143246A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200507&DB=EPODOC&CC=US&NR=2020143246A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HALEY, TIMOTHY PATRICK</creatorcontrib><creatorcontrib>HODGIN, RON TRAVIS</creatorcontrib><creatorcontrib>HELMKAMP, PHILLIP MARK</creatorcontrib><creatorcontrib>FRAZIER, MACKLIN CARTER</creatorcontrib><creatorcontrib>KIM, SANGMIN</creatorcontrib><creatorcontrib>CHIEN, YUNG-HSIN</creatorcontrib><creatorcontrib>BRZEZICKI, JERZY MICHAL</creatorcontrib><creatorcontrib>TROVERO, MICHELE ANGELO</creatorcontrib><creatorcontrib>XIE, JINGRUI</creatorcontrib><creatorcontrib>SOLOMONSON, RANDY THOMAS</creatorcontrib><creatorcontrib>MILLS, STEVEN CHRISTOPHER</creatorcontrib><creatorcontrib>LI, YUE</creatorcontrib><title>DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING</title><description>A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce modeling results such as forecasts of the time series. The pipeline includes a segmentation operation for categorizing the time series into multiple demand classes based on demand characteristics of the time series. The pipeline also includes multiple sub-pipelines corresponding to the multiple demand classes. Each of the sub-pipelines applies a model strategy to the time series in the corresponding demand class. The model strategy is selected from multiple candidate model strategies based on predetermined relationships between the demand classes and the candidate model strategies. The pipeline is executed to determine the modeling results for the time series.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4FzoU2L-5lc9CBJS-8cnEqROIkW6vsjgg_g9MPHvy6Co4jJgQ0owp4tKncJjijkoOeeAicCuYpSBN8NoBypFBqYBBwqfpEsinI6bYvVfXoseffrpth7Unsu8_wa8zJPt_zM7_EipjJV3TamPWDd_Hd9AGZeLsM</recordid><startdate>20200507</startdate><enddate>20200507</enddate><creator>HALEY, TIMOTHY PATRICK</creator><creator>HODGIN, RON TRAVIS</creator><creator>HELMKAMP, PHILLIP MARK</creator><creator>FRAZIER, MACKLIN CARTER</creator><creator>KIM, SANGMIN</creator><creator>CHIEN, YUNG-HSIN</creator><creator>BRZEZICKI, JERZY MICHAL</creator><creator>TROVERO, MICHELE ANGELO</creator><creator>XIE, JINGRUI</creator><creator>SOLOMONSON, RANDY THOMAS</creator><creator>MILLS, STEVEN CHRISTOPHER</creator><creator>LI, YUE</creator><scope>EVB</scope></search><sort><creationdate>20200507</creationdate><title>DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING</title><author>HALEY, TIMOTHY PATRICK ; HODGIN, RON TRAVIS ; HELMKAMP, PHILLIP MARK ; FRAZIER, MACKLIN CARTER ; KIM, SANGMIN ; CHIEN, YUNG-HSIN ; BRZEZICKI, JERZY MICHAL ; TROVERO, MICHELE ANGELO ; XIE, JINGRUI ; SOLOMONSON, RANDY THOMAS ; MILLS, STEVEN CHRISTOPHER ; LI, YUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020143246A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HALEY, TIMOTHY PATRICK</creatorcontrib><creatorcontrib>HODGIN, RON TRAVIS</creatorcontrib><creatorcontrib>HELMKAMP, PHILLIP MARK</creatorcontrib><creatorcontrib>FRAZIER, MACKLIN CARTER</creatorcontrib><creatorcontrib>KIM, SANGMIN</creatorcontrib><creatorcontrib>CHIEN, YUNG-HSIN</creatorcontrib><creatorcontrib>BRZEZICKI, JERZY MICHAL</creatorcontrib><creatorcontrib>TROVERO, MICHELE ANGELO</creatorcontrib><creatorcontrib>XIE, JINGRUI</creatorcontrib><creatorcontrib>SOLOMONSON, RANDY THOMAS</creatorcontrib><creatorcontrib>MILLS, STEVEN CHRISTOPHER</creatorcontrib><creatorcontrib>LI, YUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HALEY, TIMOTHY PATRICK</au><au>HODGIN, RON TRAVIS</au><au>HELMKAMP, PHILLIP MARK</au><au>FRAZIER, MACKLIN CARTER</au><au>KIM, SANGMIN</au><au>CHIEN, YUNG-HSIN</au><au>BRZEZICKI, JERZY MICHAL</au><au>TROVERO, MICHELE ANGELO</au><au>XIE, JINGRUI</au><au>SOLOMONSON, RANDY THOMAS</au><au>MILLS, STEVEN CHRISTOPHER</au><au>LI, YUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING</title><date>2020-05-07</date><risdate>2020</risdate><abstract>A pipeline system for time-series data forecasting using a distributed computing environment is disclosed herein. In one example, a pipeline for forecasting time series is generated. The pipeline represents a sequence of operations for processing the time series to produce modeling results such as forecasts of the time series. The pipeline includes a segmentation operation for categorizing the time series into multiple demand classes based on demand characteristics of the time series. The pipeline also includes multiple sub-pipelines corresponding to the multiple demand classes. Each of the sub-pipelines applies a model strategy to the time series in the corresponding demand class. The model strategy is selected from multiple candidate model strategies based on predetermined relationships between the demand classes and the candidate model strategies. The pipeline is executed to determine the modeling results for the time series.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020143246A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | DEMAND CLASSIFICATION BASED PIPELINE SYSTEM FOR TIME-SERIES DATA FORECASTING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HALEY,%20TIMOTHY%20PATRICK&rft.date=2020-05-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020143246A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |