MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD

A malicious software recognition apparatus and method are provided. The malicious software recognition apparatus stores a training dataset, which includes a plurality of network flow datasets. Each network flow dataset corresponds to one of a plurality of software categories, and the software catego...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HSU, Wei-Chao, CHEN, Jiann-Liang, CHEN, Yu-Hung, CHEN, Yan-Ju, KE, Ying-Tsun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HSU, Wei-Chao
CHEN, Jiann-Liang
CHEN, Yu-Hung
CHEN, Yan-Ju
KE, Ying-Tsun
description A malicious software recognition apparatus and method are provided. The malicious software recognition apparatus stores a training dataset, which includes a plurality of network flow datasets. Each network flow dataset corresponds to one of a plurality of software categories, and the software categories include a plurality of malicious software categories. The malicious software recognition apparatus tests a malicious software recognition model and learns that a plurality of recognition accuracies of a subset of the malicious software categories are low, determines that an overlap degree of the network flow datasets corresponding to the subset is high, updates the software categories by combining the malicious software categories corresponding to the subset, updates the training dataset by integrating the network flow datasets corresponding to the subset, trains the malicious software recognition model according to the updated training dataset. The trained malicious software recognition model is deployed to the real world.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020125896A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020125896A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020125896A13</originalsourceid><addsrcrecordid>eNrjZDD2dfTxdPb0Dw1WCPZ3Cwl3DHJVCHJ19nf38wzx9PdTcAwIcAxyDAFKO_q5KPi6hnj4u_AwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIwNDI1MLSzNHQ2PiVAEAXAAoSw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD</title><source>esp@cenet</source><creator>HSU, Wei-Chao ; CHEN, Jiann-Liang ; CHEN, Yu-Hung ; CHEN, Yan-Ju ; KE, Ying-Tsun</creator><creatorcontrib>HSU, Wei-Chao ; CHEN, Jiann-Liang ; CHEN, Yu-Hung ; CHEN, Yan-Ju ; KE, Ying-Tsun</creatorcontrib><description>A malicious software recognition apparatus and method are provided. The malicious software recognition apparatus stores a training dataset, which includes a plurality of network flow datasets. Each network flow dataset corresponds to one of a plurality of software categories, and the software categories include a plurality of malicious software categories. The malicious software recognition apparatus tests a malicious software recognition model and learns that a plurality of recognition accuracies of a subset of the malicious software categories are low, determines that an overlap degree of the network flow datasets corresponding to the subset is high, updates the software categories by combining the malicious software categories corresponding to the subset, updates the training dataset by integrating the network flow datasets corresponding to the subset, trains the malicious software recognition model according to the updated training dataset. The trained malicious software recognition model is deployed to the real world.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200423&amp;DB=EPODOC&amp;CC=US&amp;NR=2020125896A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200423&amp;DB=EPODOC&amp;CC=US&amp;NR=2020125896A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HSU, Wei-Chao</creatorcontrib><creatorcontrib>CHEN, Jiann-Liang</creatorcontrib><creatorcontrib>CHEN, Yu-Hung</creatorcontrib><creatorcontrib>CHEN, Yan-Ju</creatorcontrib><creatorcontrib>KE, Ying-Tsun</creatorcontrib><title>MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD</title><description>A malicious software recognition apparatus and method are provided. The malicious software recognition apparatus stores a training dataset, which includes a plurality of network flow datasets. Each network flow dataset corresponds to one of a plurality of software categories, and the software categories include a plurality of malicious software categories. The malicious software recognition apparatus tests a malicious software recognition model and learns that a plurality of recognition accuracies of a subset of the malicious software categories are low, determines that an overlap degree of the network flow datasets corresponding to the subset is high, updates the software categories by combining the malicious software categories corresponding to the subset, updates the training dataset by integrating the network flow datasets corresponding to the subset, trains the malicious software recognition model according to the updated training dataset. The trained malicious software recognition model is deployed to the real world.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD2dfTxdPb0Dw1WCPZ3Cwl3DHJVCHJ19nf38wzx9PdTcAwIcAxyDAFKO_q5KPi6hnj4u_AwsKYl5hSn8kJpbgZlN9cQZw_d1IL8-NTigsTk1LzUkvjQYCMDIwNDI1MLSzNHQ2PiVAEAXAAoSw</recordid><startdate>20200423</startdate><enddate>20200423</enddate><creator>HSU, Wei-Chao</creator><creator>CHEN, Jiann-Liang</creator><creator>CHEN, Yu-Hung</creator><creator>CHEN, Yan-Ju</creator><creator>KE, Ying-Tsun</creator><scope>EVB</scope></search><sort><creationdate>20200423</creationdate><title>MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD</title><author>HSU, Wei-Chao ; CHEN, Jiann-Liang ; CHEN, Yu-Hung ; CHEN, Yan-Ju ; KE, Ying-Tsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020125896A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>HSU, Wei-Chao</creatorcontrib><creatorcontrib>CHEN, Jiann-Liang</creatorcontrib><creatorcontrib>CHEN, Yu-Hung</creatorcontrib><creatorcontrib>CHEN, Yan-Ju</creatorcontrib><creatorcontrib>KE, Ying-Tsun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HSU, Wei-Chao</au><au>CHEN, Jiann-Liang</au><au>CHEN, Yu-Hung</au><au>CHEN, Yan-Ju</au><au>KE, Ying-Tsun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD</title><date>2020-04-23</date><risdate>2020</risdate><abstract>A malicious software recognition apparatus and method are provided. The malicious software recognition apparatus stores a training dataset, which includes a plurality of network flow datasets. Each network flow dataset corresponds to one of a plurality of software categories, and the software categories include a plurality of malicious software categories. The malicious software recognition apparatus tests a malicious software recognition model and learns that a plurality of recognition accuracies of a subset of the malicious software categories are low, determines that an overlap degree of the network flow datasets corresponding to the subset is high, updates the software categories by combining the malicious software categories corresponding to the subset, updates the training dataset by integrating the network flow datasets corresponding to the subset, trains the malicious software recognition model according to the updated training dataset. The trained malicious software recognition model is deployed to the real world.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020125896A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title MALICIOUS SOFTWARE RECOGNITION APPARATUS AND METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HSU,%20Wei-Chao&rft.date=2020-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020125896A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true