Document Entity Linking on Online Social Networks
In one embodiment, a method includes accessing a document, identifying one or more noun phrases in the document by performing a pre-processing on the accessed document, generating, for each identified noun phrase, a list of candidate entities corresponding to the noun phrase, wherein the list of can...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yan, Xiaohua Dousti, Mohammad Javad Du, Jingfei Shankar, Jeevan Xue, Bi Stoyanov, Veselin S Shenoy, Rajesh Krishna |
description | In one embodiment, a method includes accessing a document, identifying one or more noun phrases in the document by performing a pre-processing on the accessed document, generating, for each identified noun phrase, a list of candidate entities corresponding to the noun phrase, wherein the list of candidate entities is looked up in an entity index using the noun phrase, computing, for each candidate entity corresponding to each identified noun phrase, a confidence score that the noun phrase is intended to reference the candidate entity by analyzing the accessed document by a machine learning model, constructing a pool of mention-entity pairs for the accessed document, filtering the pool of mention-entity pairs by removing each mention-entity pair from the pool based on their computed confidence scores, and storing the post-filtered pool of mention-entity pairs in a data store in association with the accessed document. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020065422A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020065422A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020065422A13</originalsourceid><addsrcrecordid>eNrjZDB0yU8uzU3NK1FwzSvJLKlU8MnMy87MS1fIz1Pwz8vJzEtVCM5PzkzMUfBLLSnPL8ou5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGBgZmpiZGRo6GxsSpAgAcqCw8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Document Entity Linking on Online Social Networks</title><source>esp@cenet</source><creator>Yan, Xiaohua ; Dousti, Mohammad Javad ; Du, Jingfei ; Shankar, Jeevan ; Xue, Bi ; Stoyanov, Veselin S ; Shenoy, Rajesh Krishna</creator><creatorcontrib>Yan, Xiaohua ; Dousti, Mohammad Javad ; Du, Jingfei ; Shankar, Jeevan ; Xue, Bi ; Stoyanov, Veselin S ; Shenoy, Rajesh Krishna</creatorcontrib><description>In one embodiment, a method includes accessing a document, identifying one or more noun phrases in the document by performing a pre-processing on the accessed document, generating, for each identified noun phrase, a list of candidate entities corresponding to the noun phrase, wherein the list of candidate entities is looked up in an entity index using the noun phrase, computing, for each candidate entity corresponding to each identified noun phrase, a confidence score that the noun phrase is intended to reference the candidate entity by analyzing the accessed document by a machine learning model, constructing a pool of mention-entity pairs for the accessed document, filtering the pool of mention-entity pairs by removing each mention-entity pair from the pool based on their computed confidence scores, and storing the post-filtered pool of mention-entity pairs in a data store in association with the accessed document.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200227&DB=EPODOC&CC=US&NR=2020065422A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200227&DB=EPODOC&CC=US&NR=2020065422A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yan, Xiaohua</creatorcontrib><creatorcontrib>Dousti, Mohammad Javad</creatorcontrib><creatorcontrib>Du, Jingfei</creatorcontrib><creatorcontrib>Shankar, Jeevan</creatorcontrib><creatorcontrib>Xue, Bi</creatorcontrib><creatorcontrib>Stoyanov, Veselin S</creatorcontrib><creatorcontrib>Shenoy, Rajesh Krishna</creatorcontrib><title>Document Entity Linking on Online Social Networks</title><description>In one embodiment, a method includes accessing a document, identifying one or more noun phrases in the document by performing a pre-processing on the accessed document, generating, for each identified noun phrase, a list of candidate entities corresponding to the noun phrase, wherein the list of candidate entities is looked up in an entity index using the noun phrase, computing, for each candidate entity corresponding to each identified noun phrase, a confidence score that the noun phrase is intended to reference the candidate entity by analyzing the accessed document by a machine learning model, constructing a pool of mention-entity pairs for the accessed document, filtering the pool of mention-entity pairs by removing each mention-entity pair from the pool based on their computed confidence scores, and storing the post-filtered pool of mention-entity pairs in a data store in association with the accessed document.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB0yU8uzU3NK1FwzSvJLKlU8MnMy87MS1fIz1Pwz8vJzEtVCM5PzkzMUfBLLSnPL8ou5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGBgZmpiZGRo6GxsSpAgAcqCw8</recordid><startdate>20200227</startdate><enddate>20200227</enddate><creator>Yan, Xiaohua</creator><creator>Dousti, Mohammad Javad</creator><creator>Du, Jingfei</creator><creator>Shankar, Jeevan</creator><creator>Xue, Bi</creator><creator>Stoyanov, Veselin S</creator><creator>Shenoy, Rajesh Krishna</creator><scope>EVB</scope></search><sort><creationdate>20200227</creationdate><title>Document Entity Linking on Online Social Networks</title><author>Yan, Xiaohua ; Dousti, Mohammad Javad ; Du, Jingfei ; Shankar, Jeevan ; Xue, Bi ; Stoyanov, Veselin S ; Shenoy, Rajesh Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020065422A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Yan, Xiaohua</creatorcontrib><creatorcontrib>Dousti, Mohammad Javad</creatorcontrib><creatorcontrib>Du, Jingfei</creatorcontrib><creatorcontrib>Shankar, Jeevan</creatorcontrib><creatorcontrib>Xue, Bi</creatorcontrib><creatorcontrib>Stoyanov, Veselin S</creatorcontrib><creatorcontrib>Shenoy, Rajesh Krishna</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yan, Xiaohua</au><au>Dousti, Mohammad Javad</au><au>Du, Jingfei</au><au>Shankar, Jeevan</au><au>Xue, Bi</au><au>Stoyanov, Veselin S</au><au>Shenoy, Rajesh Krishna</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Document Entity Linking on Online Social Networks</title><date>2020-02-27</date><risdate>2020</risdate><abstract>In one embodiment, a method includes accessing a document, identifying one or more noun phrases in the document by performing a pre-processing on the accessed document, generating, for each identified noun phrase, a list of candidate entities corresponding to the noun phrase, wherein the list of candidate entities is looked up in an entity index using the noun phrase, computing, for each candidate entity corresponding to each identified noun phrase, a confidence score that the noun phrase is intended to reference the candidate entity by analyzing the accessed document by a machine learning model, constructing a pool of mention-entity pairs for the accessed document, filtering the pool of mention-entity pairs by removing each mention-entity pair from the pool based on their computed confidence scores, and storing the post-filtered pool of mention-entity pairs in a data store in association with the accessed document.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020065422A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Document Entity Linking on Online Social Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yan,%20Xiaohua&rft.date=2020-02-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020065422A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |