SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL
A surface-treated metal plate including: a metal plate; and a nickel-cobalt binary alloy layer formed on the metal plate. When a part having a content ratio of oxygen atoms of 5 atomic % or more as measured by X-ray photoelectron spectroscopic analysis is an oxide coating film, the nickel-cobalt bin...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | NAKANO, Yuji MATSUSHIGE, Daisuke YOSHIOKA, Koh |
description | A surface-treated metal plate including: a metal plate; and a nickel-cobalt binary alloy layer formed on the metal plate. When a part having a content ratio of oxygen atoms of 5 atomic % or more as measured by X-ray photoelectron spectroscopic analysis is an oxide coating film, the nickel-cobalt binary alloy layer contains the oxide coating film with a thickness of 0.5 to 30 nm on a surface thereof, and when a pressure cooker test including temperature increasing, retention for 72 hours under a water-vapor atmosphere at a temperature of 105° C. and a relative humidity of 100% RH, and temperature decreasing is performed, the amount of increase in the thickness of the oxide coating film is 28 nm or less. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020035960A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020035960A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020035960A13</originalsourceid><addsrcrecordid>eNrjZDANDg1yc3R21Q0JcnUMcXVR8HUNcfRRCPABcnQUnF19fBSc_f1CHD39XIN0FBz9XMBiPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIwMDY1NLMwNHQmDhVAFBAJ_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL</title><source>esp@cenet</source><creator>NAKANO, Yuji ; MATSUSHIGE, Daisuke ; YOSHIOKA, Koh</creator><creatorcontrib>NAKANO, Yuji ; MATSUSHIGE, Daisuke ; YOSHIOKA, Koh</creatorcontrib><description>A surface-treated metal plate including: a metal plate; and a nickel-cobalt binary alloy layer formed on the metal plate. When a part having a content ratio of oxygen atoms of 5 atomic % or more as measured by X-ray photoelectron spectroscopic analysis is an oxide coating film, the nickel-cobalt binary alloy layer contains the oxide coating film with a thickness of 0.5 to 30 nm on a surface thereof, and when a pressure cooker test including temperature increasing, retention for 72 hours under a water-vapor atmosphere at a temperature of 105° C. and a relative humidity of 100% RH, and temperature decreasing is performed, the amount of increase in the thickness of the oxide coating film is 28 nm or less.</description><language>eng</language><subject>APPARATUS THEREFOR ; BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; ELECTROFORMING ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200130&DB=EPODOC&CC=US&NR=2020035960A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200130&DB=EPODOC&CC=US&NR=2020035960A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NAKANO, Yuji</creatorcontrib><creatorcontrib>MATSUSHIGE, Daisuke</creatorcontrib><creatorcontrib>YOSHIOKA, Koh</creatorcontrib><title>SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL</title><description>A surface-treated metal plate including: a metal plate; and a nickel-cobalt binary alloy layer formed on the metal plate. When a part having a content ratio of oxygen atoms of 5 atomic % or more as measured by X-ray photoelectron spectroscopic analysis is an oxide coating film, the nickel-cobalt binary alloy layer contains the oxide coating film with a thickness of 0.5 to 30 nm on a surface thereof, and when a pressure cooker test including temperature increasing, retention for 72 hours under a water-vapor atmosphere at a temperature of 105° C. and a relative humidity of 100% RH, and temperature decreasing is performed, the amount of increase in the thickness of the oxide coating film is 28 nm or less.</description><subject>APPARATUS THEREFOR</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>ELECTROFORMING</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDANDg1yc3R21Q0JcnUMcXVR8HUNcfRRCPABcnQUnF19fBSc_f1CHD39XIN0FBz9XMBiPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPjTYyMDIwMDY1NLMwNHQmDhVAFBAJ_w</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>NAKANO, Yuji</creator><creator>MATSUSHIGE, Daisuke</creator><creator>YOSHIOKA, Koh</creator><scope>EVB</scope></search><sort><creationdate>20200130</creationdate><title>SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL</title><author>NAKANO, Yuji ; MATSUSHIGE, Daisuke ; YOSHIOKA, Koh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020035960A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>APPARATUS THEREFOR</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>ELECTROFORMING</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>NAKANO, Yuji</creatorcontrib><creatorcontrib>MATSUSHIGE, Daisuke</creatorcontrib><creatorcontrib>YOSHIOKA, Koh</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NAKANO, Yuji</au><au>MATSUSHIGE, Daisuke</au><au>YOSHIOKA, Koh</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL</title><date>2020-01-30</date><risdate>2020</risdate><abstract>A surface-treated metal plate including: a metal plate; and a nickel-cobalt binary alloy layer formed on the metal plate. When a part having a content ratio of oxygen atoms of 5 atomic % or more as measured by X-ray photoelectron spectroscopic analysis is an oxide coating film, the nickel-cobalt binary alloy layer contains the oxide coating film with a thickness of 0.5 to 30 nm on a surface thereof, and when a pressure cooker test including temperature increasing, retention for 72 hours under a water-vapor atmosphere at a temperature of 105° C. and a relative humidity of 100% RH, and temperature decreasing is performed, the amount of increase in the thickness of the oxide coating film is 28 nm or less.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020035960A1 |
source | esp@cenet |
subjects | APPARATUS THEREFOR BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRICITY ELECTROFORMING ELECTROLYTIC OR ELECTROPHORETIC PROCESSES INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | SURFACE-TREATED METAL PLATE, CELL CONTAINER, AND CELL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NAKANO,%20Yuji&rft.date=2020-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020035960A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |