COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS

An improved technique involves including implicit feedback inferred from a fraud analyst's actions into a fraud detection model tuning process. Along these lines, as part of a tuning process, an authentication server sends electronic transactions carrying a certain amount of risk to a case mana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Villa, Yael, Kaufman, Alon, Blatt, Marcelo
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Villa, Yael
Kaufman, Alon
Blatt, Marcelo
description An improved technique involves including implicit feedback inferred from a fraud analyst's actions into a fraud detection model tuning process. Along these lines, as part of a tuning process, an authentication server sends electronic transactions carrying a certain amount of risk to a case management center in which fraud analysts investigate the electronic transactions to verify whether the transactions are fraudulent or non-fraudulent. In addition to receiving this explicit feedback from the case management center, however, the authentication server also receives implicit feedback indicative of attributes of the fraud analysts themselves. The authentication server then inputs these implicit feedback parameter values into a fraud detection model tuning engine that tunes the fraud detection model.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020034831A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020034831A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020034831A13</originalsourceid><addsrcrecordid>eNrjZAh09vd18vTz9HNXcI0I8PF09gxRcPRzUfD0hXLcXF1dnBydvRU8_RSCXX3cdH1cHYPA6t2CHENdFFxcQ1ydQzz9gbKRwSGuvsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjAwNjEwtjQ0dCYOFUAQ9owDA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS</title><source>esp@cenet</source><creator>Villa, Yael ; Kaufman, Alon ; Blatt, Marcelo</creator><creatorcontrib>Villa, Yael ; Kaufman, Alon ; Blatt, Marcelo</creatorcontrib><description>An improved technique involves including implicit feedback inferred from a fraud analyst's actions into a fraud detection model tuning process. Along these lines, as part of a tuning process, an authentication server sends electronic transactions carrying a certain amount of risk to a case management center in which fraud analysts investigate the electronic transactions to verify whether the transactions are fraudulent or non-fraudulent. In addition to receiving this explicit feedback from the case management center, however, the authentication server also receives implicit feedback indicative of attributes of the fraud analysts themselves. The authentication server then inputs these implicit feedback parameter values into a fraud detection model tuning engine that tunes the fraud detection model.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200130&amp;DB=EPODOC&amp;CC=US&amp;NR=2020034831A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200130&amp;DB=EPODOC&amp;CC=US&amp;NR=2020034831A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Villa, Yael</creatorcontrib><creatorcontrib>Kaufman, Alon</creatorcontrib><creatorcontrib>Blatt, Marcelo</creatorcontrib><title>COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS</title><description>An improved technique involves including implicit feedback inferred from a fraud analyst's actions into a fraud detection model tuning process. Along these lines, as part of a tuning process, an authentication server sends electronic transactions carrying a certain amount of risk to a case management center in which fraud analysts investigate the electronic transactions to verify whether the transactions are fraudulent or non-fraudulent. In addition to receiving this explicit feedback from the case management center, however, the authentication server also receives implicit feedback indicative of attributes of the fraud analysts themselves. The authentication server then inputs these implicit feedback parameter values into a fraud detection model tuning engine that tunes the fraud detection model.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAh09vd18vTz9HNXcI0I8PF09gxRcPRzUfD0hXLcXF1dnBydvRU8_RSCXX3cdH1cHYPA6t2CHENdFFxcQ1ydQzz9gbKRwSGuvsE8DKxpiTnFqbxQmptB2c01xNlDN7UgPz61uCAxOTUvtSQ-NNjIwMjAwNjEwtjQ0dCYOFUAQ9owDA</recordid><startdate>20200130</startdate><enddate>20200130</enddate><creator>Villa, Yael</creator><creator>Kaufman, Alon</creator><creator>Blatt, Marcelo</creator><scope>EVB</scope></search><sort><creationdate>20200130</creationdate><title>COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS</title><author>Villa, Yael ; Kaufman, Alon ; Blatt, Marcelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020034831A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Villa, Yael</creatorcontrib><creatorcontrib>Kaufman, Alon</creatorcontrib><creatorcontrib>Blatt, Marcelo</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Villa, Yael</au><au>Kaufman, Alon</au><au>Blatt, Marcelo</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS</title><date>2020-01-30</date><risdate>2020</risdate><abstract>An improved technique involves including implicit feedback inferred from a fraud analyst's actions into a fraud detection model tuning process. Along these lines, as part of a tuning process, an authentication server sends electronic transactions carrying a certain amount of risk to a case management center in which fraud analysts investigate the electronic transactions to verify whether the transactions are fraudulent or non-fraudulent. In addition to receiving this explicit feedback from the case management center, however, the authentication server also receives implicit feedback indicative of attributes of the fraud analysts themselves. The authentication server then inputs these implicit feedback parameter values into a fraud detection model tuning engine that tunes the fraud detection model.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020034831A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title COMBINING EXPLICIT AND IMPLICIT FEEDBACK IN SELF-LEARNING FRAUD DETECTION SYSTEMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A28%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Villa,%20Yael&rft.date=2020-01-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020034831A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true