INTEGER ARITHMETIC METHOD FOR WIRE LENGTH MINIMIZATION IN GLOBAL PLACEMENT WITH CONVOLUTION BASED DENSITY PENALTY COMPUTATION
A putative circuit design is represented as a set of movable blocks of predetermined size which must fit into a bounding box, with a plurality of subsets to be interconnected by wires. A total weighted wire length is determined as a function of coordinates of centers of the movable blocks by summing...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A putative circuit design is represented as a set of movable blocks of predetermined size which must fit into a bounding box, with a plurality of subsets to be interconnected by wires. A total weighted wire length is determined as a function of coordinates of centers of the movable blocks by summing a half perimeter wire length over the plurality of subsets, and a density penalty is determined as a convolution of an indicator function of the current placement and a convolution kernel, via incremental integer computation without use of floating point arithmetic. Blocks are moved to minimize a penalty function which is the sum of the total weighted wire length and the product of a density penalty weight and the density penalty. The process repeats until a maximum value of the density penalty weight is reached or the density penalty approaches zero. |
---|