GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS

Methods, systems, and non-transitory computer readable storage media are disclosed for using reject inference to generate synthetic data for modifying lead scoring models. For example, the disclosed system identifies an original dataset corresponding to an output of a lead scoring model that generat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xu, Maoqi, Pani, Abhishek, Yan, Zhenyu, Xu, Jin
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Xu, Maoqi
Pani, Abhishek
Yan, Zhenyu
Xu, Jin
description Methods, systems, and non-transitory computer readable storage media are disclosed for using reject inference to generate synthetic data for modifying lead scoring models. For example, the disclosed system identifies an original dataset corresponding to an output of a lead scoring model that generates scores for a plurality of prospects to indicate a likelihood of success of prospects of the plurality of prospects. In one or more embodiments, the disclosed system selects a reject inference model by performing simulations on historical prospect data associated with the original dataset. Additionally, the disclosed system uses the selected reject inference model to generate an imputed dataset by generating synthetic outcome data representing simulated outcomes of rejected prospects in the original dataset. The disclosed system then uses the imputed dataset to modify the lead scoring model by modifying at least one parameter of the lead scoring model using the synthetic outcome data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020027157A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020027157A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020027157A13</originalsourceid><addsrcrecordid>eNqNirEKwjAYBrs4iPoOPzgLbUQ6h_RLG6mJ5E-HQqEUiZNoob4_GvABnI47bp0NNSy8DMbWxL0NDYJRVMkgqeMUPc5QgYzV8LAKdPVOgRlM2nm6uMroPo0tZEWsnE_yzWh5m63u02OJux832V4jqOYQ59cYl3m6xWd8jx2LXOS5KItTKYvjf9cHjN4zSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS</title><source>esp@cenet</source><creator>Xu, Maoqi ; Pani, Abhishek ; Yan, Zhenyu ; Xu, Jin</creator><creatorcontrib>Xu, Maoqi ; Pani, Abhishek ; Yan, Zhenyu ; Xu, Jin</creatorcontrib><description>Methods, systems, and non-transitory computer readable storage media are disclosed for using reject inference to generate synthetic data for modifying lead scoring models. For example, the disclosed system identifies an original dataset corresponding to an output of a lead scoring model that generates scores for a plurality of prospects to indicate a likelihood of success of prospects of the plurality of prospects. In one or more embodiments, the disclosed system selects a reject inference model by performing simulations on historical prospect data associated with the original dataset. Additionally, the disclosed system uses the selected reject inference model to generate an imputed dataset by generating synthetic outcome data representing simulated outcomes of rejected prospects in the original dataset. The disclosed system then uses the imputed dataset to modify the lead scoring model by modifying at least one parameter of the lead scoring model using the synthetic outcome data.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200123&amp;DB=EPODOC&amp;CC=US&amp;NR=2020027157A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200123&amp;DB=EPODOC&amp;CC=US&amp;NR=2020027157A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Xu, Maoqi</creatorcontrib><creatorcontrib>Pani, Abhishek</creatorcontrib><creatorcontrib>Yan, Zhenyu</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><title>GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS</title><description>Methods, systems, and non-transitory computer readable storage media are disclosed for using reject inference to generate synthetic data for modifying lead scoring models. For example, the disclosed system identifies an original dataset corresponding to an output of a lead scoring model that generates scores for a plurality of prospects to indicate a likelihood of success of prospects of the plurality of prospects. In one or more embodiments, the disclosed system selects a reject inference model by performing simulations on historical prospect data associated with the original dataset. Additionally, the disclosed system uses the selected reject inference model to generate an imputed dataset by generating synthetic outcome data representing simulated outcomes of rejected prospects in the original dataset. The disclosed system then uses the imputed dataset to modify the lead scoring model by modifying at least one parameter of the lead scoring model using the synthetic outcome data.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAYBrs4iPoOPzgLbUQ6h_RLG6mJ5E-HQqEUiZNoob4_GvABnI47bp0NNSy8DMbWxL0NDYJRVMkgqeMUPc5QgYzV8LAKdPVOgRlM2nm6uMroPo0tZEWsnE_yzWh5m63u02OJux832V4jqOYQ59cYl3m6xWd8jx2LXOS5KItTKYvjf9cHjN4zSQ</recordid><startdate>20200123</startdate><enddate>20200123</enddate><creator>Xu, Maoqi</creator><creator>Pani, Abhishek</creator><creator>Yan, Zhenyu</creator><creator>Xu, Jin</creator><scope>EVB</scope></search><sort><creationdate>20200123</creationdate><title>GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS</title><author>Xu, Maoqi ; Pani, Abhishek ; Yan, Zhenyu ; Xu, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020027157A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Maoqi</creatorcontrib><creatorcontrib>Pani, Abhishek</creatorcontrib><creatorcontrib>Yan, Zhenyu</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Maoqi</au><au>Pani, Abhishek</au><au>Yan, Zhenyu</au><au>Xu, Jin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS</title><date>2020-01-23</date><risdate>2020</risdate><abstract>Methods, systems, and non-transitory computer readable storage media are disclosed for using reject inference to generate synthetic data for modifying lead scoring models. For example, the disclosed system identifies an original dataset corresponding to an output of a lead scoring model that generates scores for a plurality of prospects to indicate a likelihood of success of prospects of the plurality of prospects. In one or more embodiments, the disclosed system selects a reject inference model by performing simulations on historical prospect data associated with the original dataset. Additionally, the disclosed system uses the selected reject inference model to generate an imputed dataset by generating synthetic outcome data representing simulated outcomes of rejected prospects in the original dataset. The disclosed system then uses the imputed dataset to modify the lead scoring model by modifying at least one parameter of the lead scoring model using the synthetic outcome data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020027157A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title GENERATING SYNTHETIC DATA USING REJECT INFERENCE PROCESSES FOR MODIFYING LEAD SCORING MODELS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A11%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Xu,%20Maoqi&rft.date=2020-01-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020027157A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true