Machine Learning and Security Classification of User Accounts

Machine learning techniques are used in combination with graph data structures to perform automated classification of accounts. Graphs may be constructed using a seed node and then expanded outward to second-degree nodes and third-degree nodes that are connected to a seed user account node via direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Levi, Itzik, Fu, Kun, Fang, Chuanyun, Ran, Chunmao, Rotenberg, Matias, Cohen, Adam
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Levi, Itzik
Fu, Kun
Fang, Chuanyun
Ran, Chunmao
Rotenberg, Matias
Cohen, Adam
description Machine learning techniques are used in combination with graph data structures to perform automated classification of accounts. Graphs may be constructed using a seed node and then expanded outward to second-degree nodes and third-degree nodes that are connected to a seed user account node via direct interaction between the accounts. Characterization information regarding the interaction between accounts can be stored in the graph (e.g., quantity of interactions, types of interactions) as well as other metrics and metadata. A classifier, using random forest or another technique, may be trained using a number of different graphs that can then be used to reach a determination as to whether a user account falls into one particular category or another. These techniques can identify accounts that may be violating terms of service, committing a security violation, and/or performing illegal actions in a way that is not ascertainable from human analysis.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020005195A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020005195A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020005195A13</originalsourceid><addsrcrecordid>eNrjZLD1TUzOyMxLVfBJTSzKy8xLV0jMS1EITk0uLcosqVRwzkksLs5My0xOLMnMz1PIT1MILU4tUnBMTs4vzSsp5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGBgYGpoaWpo6GxsSpAgCxAjC4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Machine Learning and Security Classification of User Accounts</title><source>esp@cenet</source><creator>Levi, Itzik ; Fu, Kun ; Fang, Chuanyun ; Ran, Chunmao ; Rotenberg, Matias ; Cohen, Adam</creator><creatorcontrib>Levi, Itzik ; Fu, Kun ; Fang, Chuanyun ; Ran, Chunmao ; Rotenberg, Matias ; Cohen, Adam</creatorcontrib><description>Machine learning techniques are used in combination with graph data structures to perform automated classification of accounts. Graphs may be constructed using a seed node and then expanded outward to second-degree nodes and third-degree nodes that are connected to a seed user account node via direct interaction between the accounts. Characterization information regarding the interaction between accounts can be stored in the graph (e.g., quantity of interactions, types of interactions) as well as other metrics and metadata. A classifier, using random forest or another technique, may be trained using a number of different graphs that can then be used to reach a determination as to whether a user account falls into one particular category or another. These techniques can identify accounts that may be violating terms of service, committing a security violation, and/or performing illegal actions in a way that is not ascertainable from human analysis.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200102&amp;DB=EPODOC&amp;CC=US&amp;NR=2020005195A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200102&amp;DB=EPODOC&amp;CC=US&amp;NR=2020005195A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Levi, Itzik</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><creatorcontrib>Fang, Chuanyun</creatorcontrib><creatorcontrib>Ran, Chunmao</creatorcontrib><creatorcontrib>Rotenberg, Matias</creatorcontrib><creatorcontrib>Cohen, Adam</creatorcontrib><title>Machine Learning and Security Classification of User Accounts</title><description>Machine learning techniques are used in combination with graph data structures to perform automated classification of accounts. Graphs may be constructed using a seed node and then expanded outward to second-degree nodes and third-degree nodes that are connected to a seed user account node via direct interaction between the accounts. Characterization information regarding the interaction between accounts can be stored in the graph (e.g., quantity of interactions, types of interactions) as well as other metrics and metadata. A classifier, using random forest or another technique, may be trained using a number of different graphs that can then be used to reach a determination as to whether a user account falls into one particular category or another. These techniques can identify accounts that may be violating terms of service, committing a security violation, and/or performing illegal actions in a way that is not ascertainable from human analysis.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD1TUzOyMxLVfBJTSzKy8xLV0jMS1EITk0uLcosqVRwzkksLs5My0xOLMnMz1PIT1MILU4tUnBMTs4vzSsp5mFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgZGBgYGpoaWpo6GxsSpAgCxAjC4</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Levi, Itzik</creator><creator>Fu, Kun</creator><creator>Fang, Chuanyun</creator><creator>Ran, Chunmao</creator><creator>Rotenberg, Matias</creator><creator>Cohen, Adam</creator><scope>EVB</scope></search><sort><creationdate>20200102</creationdate><title>Machine Learning and Security Classification of User Accounts</title><author>Levi, Itzik ; Fu, Kun ; Fang, Chuanyun ; Ran, Chunmao ; Rotenberg, Matias ; Cohen, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020005195A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Levi, Itzik</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><creatorcontrib>Fang, Chuanyun</creatorcontrib><creatorcontrib>Ran, Chunmao</creatorcontrib><creatorcontrib>Rotenberg, Matias</creatorcontrib><creatorcontrib>Cohen, Adam</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Levi, Itzik</au><au>Fu, Kun</au><au>Fang, Chuanyun</au><au>Ran, Chunmao</au><au>Rotenberg, Matias</au><au>Cohen, Adam</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Machine Learning and Security Classification of User Accounts</title><date>2020-01-02</date><risdate>2020</risdate><abstract>Machine learning techniques are used in combination with graph data structures to perform automated classification of accounts. Graphs may be constructed using a seed node and then expanded outward to second-degree nodes and third-degree nodes that are connected to a seed user account node via direct interaction between the accounts. Characterization information regarding the interaction between accounts can be stored in the graph (e.g., quantity of interactions, types of interactions) as well as other metrics and metadata. A classifier, using random forest or another technique, may be trained using a number of different graphs that can then be used to reach a determination as to whether a user account falls into one particular category or another. These techniques can identify accounts that may be violating terms of service, committing a security violation, and/or performing illegal actions in a way that is not ascertainable from human analysis.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2020005195A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Machine Learning and Security Classification of User Accounts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Levi,%20Itzik&rft.date=2020-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020005195A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true