NEURAL TREES
A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | NORI, Aditya Vithal TANNO, Ryutaro CRIMINISI, Antonio |
description | A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2020005148A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2020005148A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2020005148A13</originalsourceid><addsrcrecordid>eNrjZODxcw0NcvRRCAlydQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGBgamhiYWjobGxKkCAP8yHT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL TREES</title><source>esp@cenet</source><creator>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</creator><creatorcontrib>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</creatorcontrib><description>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200102&DB=EPODOC&CC=US&NR=2020005148A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200102&DB=EPODOC&CC=US&NR=2020005148A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TANNO, Ryutaro</creatorcontrib><creatorcontrib>CRIMINISI, Antonio</creatorcontrib><title>NEURAL TREES</title><description>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZODxcw0NcvRRCAlydQ3mYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXxocFGBkYGBgamhiYWjobGxKkCAP8yHT0</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>NORI, Aditya Vithal</creator><creator>TANNO, Ryutaro</creator><creator>CRIMINISI, Antonio</creator><scope>EVB</scope></search><sort><creationdate>20200102</creationdate><title>NEURAL TREES</title><author>NORI, Aditya Vithal ; TANNO, Ryutaro ; CRIMINISI, Antonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2020005148A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>NORI, Aditya Vithal</creatorcontrib><creatorcontrib>TANNO, Ryutaro</creatorcontrib><creatorcontrib>CRIMINISI, Antonio</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NORI, Aditya Vithal</au><au>TANNO, Ryutaro</au><au>CRIMINISI, Antonio</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL TREES</title><date>2020-01-02</date><risdate>2020</risdate><abstract>A predictor has a memory which stores at least one example for which an associated outcome is not known. The memory stores at least one decision tree comprising a plurality of nodes connected by edges, the nodes comprising a root node, internal nodes and leaf nodes. Individual ones of the nodes and individual ones of the edges each have an assigned module, comprising parameterized, differentiable operations, such that for each of the internal nodes the module computes a binary outcome for selecting a child node of the internal node. The predictor has a processor configured to compute the prediction by processing the example using a plurality of the differentiable operations selected according to a path through the tree from the root node to a leaf node.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2020005148A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | NEURAL TREES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NORI,%20Aditya%20Vithal&rft.date=2020-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2020005148A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |