AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS

This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chhaya, Niyati, Huesler, Cedric, N, Anandhavelu, Srinivasan, Balaji Vasan, Anandan, Padmanabhan, Sinha, Atanu R
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chhaya, Niyati
Huesler, Cedric
N, Anandhavelu
Srinivasan, Balaji Vasan
Anandan, Padmanabhan
Sinha, Atanu R
description This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019377785A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019377785A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019377785A13</originalsourceid><addsrcrecordid>eNrjZLBxDA3x93UM8XR29PGJVHB39XMNAvL83BVcPN09Qxx9FFz9QlyDAoI8g10VnP2BbL8QhTDHIE9Hv5BgHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBoaWxubm5h6mhoTJwqAOfBKxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><source>esp@cenet</source><creator>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</creator><creatorcontrib>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</creatorcontrib><description>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191212&amp;DB=EPODOC&amp;CC=US&amp;NR=2019377785A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191212&amp;DB=EPODOC&amp;CC=US&amp;NR=2019377785A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chhaya, Niyati</creatorcontrib><creatorcontrib>Huesler, Cedric</creatorcontrib><creatorcontrib>N, Anandhavelu</creatorcontrib><creatorcontrib>Srinivasan, Balaji Vasan</creatorcontrib><creatorcontrib>Anandan, Padmanabhan</creatorcontrib><creatorcontrib>Sinha, Atanu R</creatorcontrib><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><description>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxDA3x93UM8XR29PGJVHB39XMNAvL83BVcPN09Qxx9FFz9QlyDAoI8g10VnP2BbL8QhTDHIE9Hv5BgHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBoaWxubm5h6mhoTJwqAOfBKxg</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Chhaya, Niyati</creator><creator>Huesler, Cedric</creator><creator>N, Anandhavelu</creator><creator>Srinivasan, Balaji Vasan</creator><creator>Anandan, Padmanabhan</creator><creator>Sinha, Atanu R</creator><scope>EVB</scope></search><sort><creationdate>20191212</creationdate><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><author>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019377785A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Chhaya, Niyati</creatorcontrib><creatorcontrib>Huesler, Cedric</creatorcontrib><creatorcontrib>N, Anandhavelu</creatorcontrib><creatorcontrib>Srinivasan, Balaji Vasan</creatorcontrib><creatorcontrib>Anandan, Padmanabhan</creatorcontrib><creatorcontrib>Sinha, Atanu R</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chhaya, Niyati</au><au>Huesler, Cedric</au><au>N, Anandhavelu</au><au>Srinivasan, Balaji Vasan</au><au>Anandan, Padmanabhan</au><au>Sinha, Atanu R</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><date>2019-12-12</date><risdate>2019</risdate><abstract>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019377785A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chhaya,%20Niyati&rft.date=2019-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019377785A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true