AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS
This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devic...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chhaya, Niyati Huesler, Cedric N, Anandhavelu Srinivasan, Balaji Vasan Anandan, Padmanabhan Sinha, Atanu R |
description | This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019377785A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019377785A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019377785A13</originalsourceid><addsrcrecordid>eNrjZLBxDA3x93UM8XR29PGJVHB39XMNAvL83BVcPN09Qxx9FFz9QlyDAoI8g10VnP2BbL8QhTDHIE9Hv5BgHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBoaWxubm5h6mhoTJwqAOfBKxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><source>esp@cenet</source><creator>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</creator><creatorcontrib>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</creatorcontrib><description>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191212&DB=EPODOC&CC=US&NR=2019377785A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191212&DB=EPODOC&CC=US&NR=2019377785A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chhaya, Niyati</creatorcontrib><creatorcontrib>Huesler, Cedric</creatorcontrib><creatorcontrib>N, Anandhavelu</creatorcontrib><creatorcontrib>Srinivasan, Balaji Vasan</creatorcontrib><creatorcontrib>Anandan, Padmanabhan</creatorcontrib><creatorcontrib>Sinha, Atanu R</creatorcontrib><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><description>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLBxDA3x93UM8XR29PGJVHB39XMNAvL83BVcPN09Qxx9FFz9QlyDAoI8g10VnP2BbL8QhTDHIE9Hv5BgHgbWtMSc4lReKM3NoOzmGuLsoZtakB-fWlyQmJyal1oSHxpsZGBoaWxubm5h6mhoTJwqAOfBKxg</recordid><startdate>20191212</startdate><enddate>20191212</enddate><creator>Chhaya, Niyati</creator><creator>Huesler, Cedric</creator><creator>N, Anandhavelu</creator><creator>Srinivasan, Balaji Vasan</creator><creator>Anandan, Padmanabhan</creator><creator>Sinha, Atanu R</creator><scope>EVB</scope></search><sort><creationdate>20191212</creationdate><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><author>Chhaya, Niyati ; Huesler, Cedric ; N, Anandhavelu ; Srinivasan, Balaji Vasan ; Anandan, Padmanabhan ; Sinha, Atanu R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019377785A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>Chhaya, Niyati</creatorcontrib><creatorcontrib>Huesler, Cedric</creatorcontrib><creatorcontrib>N, Anandhavelu</creatorcontrib><creatorcontrib>Srinivasan, Balaji Vasan</creatorcontrib><creatorcontrib>Anandan, Padmanabhan</creatorcontrib><creatorcontrib>Sinha, Atanu R</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chhaya, Niyati</au><au>Huesler, Cedric</au><au>N, Anandhavelu</au><au>Srinivasan, Balaji Vasan</au><au>Anandan, Padmanabhan</au><au>Sinha, Atanu R</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS</title><date>2019-12-12</date><risdate>2019</risdate><abstract>This disclosure relates to methods, non-transitory computer readable media, and systems that, based on a sparse textual segment, can use machine learning models to generate document variants that are both conforming to digital content guidelines and uniquely tailored for distribution to client devices of specific audiences via specific delivery channels. To create such variants, in some embodiments, the methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of content-guideline-conforming documents. Additionally, or alternatively, in certain implementations, the disclosed methods, non-transitory computer readable media, and systems generate suggested modifications to a draft document that correspond to features of audience-channel-specific documents.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019377785A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ELECTRIC DIGITAL DATA PROCESSING PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | AUTOMATICALLY GENERATING DIGITAL ENTERPRISE CONTENT VARIANTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chhaya,%20Niyati&rft.date=2019-12-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019377785A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |