MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES

Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Nivarthi, Phani, Hertz, Shai, Horrell, Geoff, Lindman, Yael, Hazai, Oren, Olof-Ors, Mans, Weinreb, Enav, Mataraso, Yehonatan
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Nivarthi, Phani
Hertz, Shai
Horrell, Geoff
Lindman, Yael
Hazai, Oren
Olof-Ors, Mans
Weinreb, Enav
Mataraso, Yehonatan
description Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019354544A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019354544A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019354544A13</originalsourceid><addsrcrecordid>eNrjZIjwdXT28PRzVfBxdQzy8_Rz13VyDHZ1UQhy9XEM8fT3C_bwDFBwDA72d_YE8xUc_aCSQEUunsHO_mGuQZFg0WCgCc4eCq5-7kDzgnkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBoaWxqYmpiYmjoTFxqgCqZjIb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><source>esp@cenet</source><creator>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</creator><creatorcontrib>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</creatorcontrib><description>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191121&amp;DB=EPODOC&amp;CC=US&amp;NR=2019354544A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191121&amp;DB=EPODOC&amp;CC=US&amp;NR=2019354544A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nivarthi, Phani</creatorcontrib><creatorcontrib>Hertz, Shai</creatorcontrib><creatorcontrib>Horrell, Geoff</creatorcontrib><creatorcontrib>Lindman, Yael</creatorcontrib><creatorcontrib>Hazai, Oren</creatorcontrib><creatorcontrib>Olof-Ors, Mans</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><creatorcontrib>Mataraso, Yehonatan</creatorcontrib><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><description>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjwdXT28PRzVfBxdQzy8_Rz13VyDHZ1UQhy9XEM8fT3C_bwDFBwDA72d_YE8xUc_aCSQEUunsHO_mGuQZFg0WCgCc4eCq5-7kDzgnkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBoaWxqYmpiYmjoTFxqgCqZjIb</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Nivarthi, Phani</creator><creator>Hertz, Shai</creator><creator>Horrell, Geoff</creator><creator>Lindman, Yael</creator><creator>Hazai, Oren</creator><creator>Olof-Ors, Mans</creator><creator>Weinreb, Enav</creator><creator>Mataraso, Yehonatan</creator><scope>EVB</scope></search><sort><creationdate>20191121</creationdate><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><author>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019354544A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nivarthi, Phani</creatorcontrib><creatorcontrib>Hertz, Shai</creatorcontrib><creatorcontrib>Horrell, Geoff</creatorcontrib><creatorcontrib>Lindman, Yael</creatorcontrib><creatorcontrib>Hazai, Oren</creatorcontrib><creatorcontrib>Olof-Ors, Mans</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><creatorcontrib>Mataraso, Yehonatan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nivarthi, Phani</au><au>Hertz, Shai</au><au>Horrell, Geoff</au><au>Lindman, Yael</au><au>Hazai, Oren</au><au>Olof-Ors, Mans</au><au>Weinreb, Enav</au><au>Mataraso, Yehonatan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><date>2019-11-21</date><risdate>2019</risdate><abstract>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019354544A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nivarthi,%20Phani&rft.date=2019-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019354544A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true