MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES
Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Nivarthi, Phani Hertz, Shai Horrell, Geoff Lindman, Yael Hazai, Oren Olof-Ors, Mans Weinreb, Enav Mataraso, Yehonatan |
description | Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019354544A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019354544A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019354544A13</originalsourceid><addsrcrecordid>eNrjZIjwdXT28PRzVfBxdQzy8_Rz13VyDHZ1UQhy9XEM8fT3C_bwDFBwDA72d_YE8xUc_aCSQEUunsHO_mGuQZFg0WCgCc4eCq5-7kDzgnkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBoaWxqYmpiYmjoTFxqgCqZjIb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><source>esp@cenet</source><creator>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</creator><creatorcontrib>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</creatorcontrib><description>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191121&DB=EPODOC&CC=US&NR=2019354544A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191121&DB=EPODOC&CC=US&NR=2019354544A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Nivarthi, Phani</creatorcontrib><creatorcontrib>Hertz, Shai</creatorcontrib><creatorcontrib>Horrell, Geoff</creatorcontrib><creatorcontrib>Lindman, Yael</creatorcontrib><creatorcontrib>Hazai, Oren</creatorcontrib><creatorcontrib>Olof-Ors, Mans</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><creatorcontrib>Mataraso, Yehonatan</creatorcontrib><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><description>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIjwdXT28PRzVfBxdQzy8_Rz13VyDHZ1UQhy9XEM8fT3C_bwDFBwDA72d_YE8xUc_aCSQEUunsHO_mGuQZFg0WCgCc4eCq5-7kDzgnkYWNMSc4pTeaE0N4Oym2uIs4duakF-fGpxQWJyal5qSXxosJGBoaWxqYmpiYmjoTFxqgCqZjIb</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Nivarthi, Phani</creator><creator>Hertz, Shai</creator><creator>Horrell, Geoff</creator><creator>Lindman, Yael</creator><creator>Hazai, Oren</creator><creator>Olof-Ors, Mans</creator><creator>Weinreb, Enav</creator><creator>Mataraso, Yehonatan</creator><scope>EVB</scope></search><sort><creationdate>20191121</creationdate><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><author>Nivarthi, Phani ; Hertz, Shai ; Horrell, Geoff ; Lindman, Yael ; Hazai, Oren ; Olof-Ors, Mans ; Weinreb, Enav ; Mataraso, Yehonatan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019354544A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Nivarthi, Phani</creatorcontrib><creatorcontrib>Hertz, Shai</creatorcontrib><creatorcontrib>Horrell, Geoff</creatorcontrib><creatorcontrib>Lindman, Yael</creatorcontrib><creatorcontrib>Hazai, Oren</creatorcontrib><creatorcontrib>Olof-Ors, Mans</creatorcontrib><creatorcontrib>Weinreb, Enav</creatorcontrib><creatorcontrib>Mataraso, Yehonatan</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nivarthi, Phani</au><au>Hertz, Shai</au><au>Horrell, Geoff</au><au>Lindman, Yael</au><au>Hazai, Oren</au><au>Olof-Ors, Mans</au><au>Weinreb, Enav</au><au>Mataraso, Yehonatan</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES</title><date>2019-11-21</date><risdate>2019</risdate><abstract>Systems and techniques for determining relationships and association significance between entities are disclosed. The systems and techniques automatically identify supply chain relationships between companies based on unstructured text corpora. The system combines Machine Learning models to identify sentences mentioning supply chain between two companies (evidence), and an aggregation layer to take into account the evidence found and assign a confidence score to the relationship between companies.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019354544A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | MACHINE LEARNING-BASED RELATIONSHIP ASSOCIATION AND RELATED DISCOVERY AND SEARCH ENGINES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Nivarthi,%20Phani&rft.date=2019-11-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019354544A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |