OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL
Provided is an optically transparent conductive material which has a favorably low visibility of moire and grain even when placed over a liquid crystal display and which has an excellent stability of resistance (reliability). An optically transparent conductive material having, on an optically trans...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Yoshiki, Takenobu Sunada, Kazuhiko |
description | Provided is an optically transparent conductive material which has a favorably low visibility of moire and grain even when placed over a liquid crystal display and which has an excellent stability of resistance (reliability). An optically transparent conductive material having, on an optically transparent base material, sensor parts electrically connected to terminal parts and dummy parts not electrically connected to the terminal parts, the conductive material being characterized in that in the plane of the optically transparent conductive layer, the sensor parts are formed of a plurality of column electrodes extending in a first direction, the plurality of column electrodes being arranged at an arbitrary cycle in a second direction perpendicular to the first direction in such a manner that each dummy part is sandwiched between every two of the sensor parts, and that the sensor parts and/or the dummy parts are formed of a metal pattern in which a unit pattern area having a specific random mesh pattern is repeated in at least two directions in the plane of the optically transparent conductive layer. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019302930A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019302930A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019302930A13</originalsourceid><addsrcrecordid>eNrjZND0DwjxdHb08YlUCAly9AsOcAxy9QtRcPb3cwl1DvEMc1XwdQxxDfJ09OFhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpbGBkZA7GhoTJwqAOjfJaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL</title><source>esp@cenet</source><creator>Yoshiki, Takenobu ; Sunada, Kazuhiko</creator><creatorcontrib>Yoshiki, Takenobu ; Sunada, Kazuhiko</creatorcontrib><description>Provided is an optically transparent conductive material which has a favorably low visibility of moire and grain even when placed over a liquid crystal display and which has an excellent stability of resistance (reliability). An optically transparent conductive material having, on an optically transparent base material, sensor parts electrically connected to terminal parts and dummy parts not electrically connected to the terminal parts, the conductive material being characterized in that in the plane of the optically transparent conductive layer, the sensor parts are formed of a plurality of column electrodes extending in a first direction, the plurality of column electrodes being arranged at an arbitrary cycle in a second direction perpendicular to the first direction in such a manner that each dummy part is sandwiched between every two of the sensor parts, and that the sensor parts and/or the dummy parts are formed of a metal pattern in which a unit pattern area having a specific random mesh pattern is repeated in at least two directions in the plane of the optically transparent conductive layer.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191003&DB=EPODOC&CC=US&NR=2019302930A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191003&DB=EPODOC&CC=US&NR=2019302930A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Yoshiki, Takenobu</creatorcontrib><creatorcontrib>Sunada, Kazuhiko</creatorcontrib><title>OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL</title><description>Provided is an optically transparent conductive material which has a favorably low visibility of moire and grain even when placed over a liquid crystal display and which has an excellent stability of resistance (reliability). An optically transparent conductive material having, on an optically transparent base material, sensor parts electrically connected to terminal parts and dummy parts not electrically connected to the terminal parts, the conductive material being characterized in that in the plane of the optically transparent conductive layer, the sensor parts are formed of a plurality of column electrodes extending in a first direction, the plurality of column electrodes being arranged at an arbitrary cycle in a second direction perpendicular to the first direction in such a manner that each dummy part is sandwiched between every two of the sensor parts, and that the sensor parts and/or the dummy parts are formed of a metal pattern in which a unit pattern area having a specific random mesh pattern is repeated in at least two directions in the plane of the optically transparent conductive layer.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND0DwjxdHb08YlUCAly9AsOcAxy9QtRcPb3cwl1DvEMc1XwdQxxDfJ09OFhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpbGBkZA7GhoTJwqAOjfJaQ</recordid><startdate>20191003</startdate><enddate>20191003</enddate><creator>Yoshiki, Takenobu</creator><creator>Sunada, Kazuhiko</creator><scope>EVB</scope></search><sort><creationdate>20191003</creationdate><title>OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL</title><author>Yoshiki, Takenobu ; Sunada, Kazuhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019302930A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Yoshiki, Takenobu</creatorcontrib><creatorcontrib>Sunada, Kazuhiko</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yoshiki, Takenobu</au><au>Sunada, Kazuhiko</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL</title><date>2019-10-03</date><risdate>2019</risdate><abstract>Provided is an optically transparent conductive material which has a favorably low visibility of moire and grain even when placed over a liquid crystal display and which has an excellent stability of resistance (reliability). An optically transparent conductive material having, on an optically transparent base material, sensor parts electrically connected to terminal parts and dummy parts not electrically connected to the terminal parts, the conductive material being characterized in that in the plane of the optically transparent conductive layer, the sensor parts are formed of a plurality of column electrodes extending in a first direction, the plurality of column electrodes being arranged at an arbitrary cycle in a second direction perpendicular to the first direction in such a manner that each dummy part is sandwiched between every two of the sensor parts, and that the sensor parts and/or the dummy parts are formed of a metal pattern in which a unit pattern area having a specific random mesh pattern is repeated in at least two directions in the plane of the optically transparent conductive layer.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019302930A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | OPTICALLY TRANSPARENT CONDUCTIVE MATERIAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Yoshiki,%20Takenobu&rft.date=2019-10-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019302930A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |