Ultrasound speckle reduction and image reconstruction using deep learning techniques

Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hyun, Dongwoon, Dahl, Jeremy J, Brickson, Leandra L, Looby, Kevin T
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hyun, Dongwoon
Dahl, Jeremy J
Brickson, Leandra L
Looby, Kevin T
description Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019295295A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019295295A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019295295A13</originalsourceid><addsrcrecordid>eNqNikEKwjAURLNxIeodAq4FW3HRpYji3nZdPslYQ-NPzE_ubws9gDDwmDezVm3ncyIJha2WCDN66ARbTHaBNU3WfWiYnQksOS1DEceDtkDUHpR4bhnmze5bIFu1epEX7BZu1P5-a6-PA2LoIZEMGLnvnvWxaurmPOVSnf57_QADIjrR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><source>esp@cenet</source><creator>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</creator><creatorcontrib>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</creatorcontrib><description>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190926&amp;DB=EPODOC&amp;CC=US&amp;NR=2019295295A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190926&amp;DB=EPODOC&amp;CC=US&amp;NR=2019295295A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Dahl, Jeremy J</creatorcontrib><creatorcontrib>Brickson, Leandra L</creatorcontrib><creatorcontrib>Looby, Kevin T</creatorcontrib><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><description>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAURLNxIeodAq4FW3HRpYji3nZdPslYQ-NPzE_ubws9gDDwmDezVm3ncyIJha2WCDN66ARbTHaBNU3WfWiYnQksOS1DEceDtkDUHpR4bhnmze5bIFu1epEX7BZu1P5-a6-PA2LoIZEMGLnvnvWxaurmPOVSnf57_QADIjrR</recordid><startdate>20190926</startdate><enddate>20190926</enddate><creator>Hyun, Dongwoon</creator><creator>Dahl, Jeremy J</creator><creator>Brickson, Leandra L</creator><creator>Looby, Kevin T</creator><scope>EVB</scope></search><sort><creationdate>20190926</creationdate><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><author>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019295295A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Dahl, Jeremy J</creatorcontrib><creatorcontrib>Brickson, Leandra L</creatorcontrib><creatorcontrib>Looby, Kevin T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyun, Dongwoon</au><au>Dahl, Jeremy J</au><au>Brickson, Leandra L</au><au>Looby, Kevin T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><date>2019-09-26</date><risdate>2019</risdate><abstract>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019295295A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
MEDICAL OR VETERINARY SCIENCE
PHYSICS
SURGERY
title Ultrasound speckle reduction and image reconstruction using deep learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hyun,%20Dongwoon&rft.date=2019-09-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019295295A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true