Ultrasound speckle reduction and image reconstruction using deep learning techniques
Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated spe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Hyun, Dongwoon Dahl, Jeremy J Brickson, Leandra L Looby, Kevin T |
description | Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019295295A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019295295A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019295295A13</originalsourceid><addsrcrecordid>eNqNikEKwjAURLNxIeodAq4FW3HRpYji3nZdPslYQ-NPzE_ubws9gDDwmDezVm3ncyIJha2WCDN66ARbTHaBNU3WfWiYnQksOS1DEceDtkDUHpR4bhnmze5bIFu1epEX7BZu1P5-a6-PA2LoIZEMGLnvnvWxaurmPOVSnf57_QADIjrR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><source>esp@cenet</source><creator>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</creator><creatorcontrib>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</creatorcontrib><description>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; MEDICAL OR VETERINARY SCIENCE ; PHYSICS ; SURGERY</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190926&DB=EPODOC&CC=US&NR=2019295295A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190926&DB=EPODOC&CC=US&NR=2019295295A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Dahl, Jeremy J</creatorcontrib><creatorcontrib>Brickson, Leandra L</creatorcontrib><creatorcontrib>Looby, Kevin T</creatorcontrib><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><description>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>PHYSICS</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAURLNxIeodAq4FW3HRpYji3nZdPslYQ-NPzE_ubws9gDDwmDezVm3ncyIJha2WCDN66ARbTHaBNU3WfWiYnQksOS1DEceDtkDUHpR4bhnmze5bIFu1epEX7BZu1P5-a6-PA2LoIZEMGLnvnvWxaurmPOVSnf57_QADIjrR</recordid><startdate>20190926</startdate><enddate>20190926</enddate><creator>Hyun, Dongwoon</creator><creator>Dahl, Jeremy J</creator><creator>Brickson, Leandra L</creator><creator>Looby, Kevin T</creator><scope>EVB</scope></search><sort><creationdate>20190926</creationdate><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><author>Hyun, Dongwoon ; Dahl, Jeremy J ; Brickson, Leandra L ; Looby, Kevin T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019295295A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>PHYSICS</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>Hyun, Dongwoon</creatorcontrib><creatorcontrib>Dahl, Jeremy J</creatorcontrib><creatorcontrib>Brickson, Leandra L</creatorcontrib><creatorcontrib>Looby, Kevin T</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hyun, Dongwoon</au><au>Dahl, Jeremy J</au><au>Brickson, Leandra L</au><au>Looby, Kevin T</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ultrasound speckle reduction and image reconstruction using deep learning techniques</title><date>2019-09-26</date><risdate>2019</risdate><abstract>Ultrasound B-mode images are reconstructed directly from transducer channel signals using a convolutional neural network (CNN). The CNN is trained with a dataset including, as inputs, simulated transducer array channel signals containing simulated speckle and, as outputs, corresponding simulated speckle-free B-mode ground truth images. After training, measured real-time RF signals taken directly from an ultrasound transducer array elements prior to summation are input to the CNN and processed by the CNN to generate as output an estimated real-time B-mode image with reduced speckle.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019295295A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION IMAGE DATA PROCESSING OR GENERATION, IN GENERAL MEDICAL OR VETERINARY SCIENCE PHYSICS SURGERY |
title | Ultrasound speckle reduction and image reconstruction using deep learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A52%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hyun,%20Dongwoon&rft.date=2019-09-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019295295A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |