HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS
Technology related to hardware accelerated neural network subgraphs is disclosed. In one example of the disclosed technology, a method for compiling a neural network model is disclosed. The method includes identifying a subgraph of the neural network model to partition from the neural network model....
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | El Husseini, Ahmad Mahdi Reinhardt, Steven K Rapsang, Amanda Grace van Megen, Friedel Boehn, Christian |
description | Technology related to hardware accelerated neural network subgraphs is disclosed. In one example of the disclosed technology, a method for compiling a neural network model is disclosed. The method includes identifying a subgraph of the neural network model to partition from the neural network model. An interface can be inserted between the neural network model and a partitioned version of the identified subgraph. The partitioned version can be adapted to be evaluated with a neural network accelerator. The identified subgraph can be compiled to the neural network accelerator to generate configuration information for the neural network accelerator. The neural network accelerator can be configured with the configuration information to provide an accelerated version of the subgraph. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019286972A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019286972A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019286972A13</originalsourceid><addsrcrecordid>eNrjZND1cAxyCXcMclVwdHZ29XENcgxxdVHwcw0NcvQBUiHh_kHeCsGhTu5BjgEewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLIwszS3MjR0Jg4VQBgPyaf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS</title><source>esp@cenet</source><creator>El Husseini, Ahmad Mahdi ; Reinhardt, Steven K ; Rapsang, Amanda Grace ; van Megen, Friedel ; Boehn, Christian</creator><creatorcontrib>El Husseini, Ahmad Mahdi ; Reinhardt, Steven K ; Rapsang, Amanda Grace ; van Megen, Friedel ; Boehn, Christian</creatorcontrib><description>Technology related to hardware accelerated neural network subgraphs is disclosed. In one example of the disclosed technology, a method for compiling a neural network model is disclosed. The method includes identifying a subgraph of the neural network model to partition from the neural network model. An interface can be inserted between the neural network model and a partitioned version of the identified subgraph. The partitioned version can be adapted to be evaluated with a neural network accelerator. The identified subgraph can be compiled to the neural network accelerator to generate configuration information for the neural network accelerator. The neural network accelerator can be configured with the configuration information to provide an accelerated version of the subgraph.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190919&DB=EPODOC&CC=US&NR=2019286972A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190919&DB=EPODOC&CC=US&NR=2019286972A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>El Husseini, Ahmad Mahdi</creatorcontrib><creatorcontrib>Reinhardt, Steven K</creatorcontrib><creatorcontrib>Rapsang, Amanda Grace</creatorcontrib><creatorcontrib>van Megen, Friedel</creatorcontrib><creatorcontrib>Boehn, Christian</creatorcontrib><title>HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS</title><description>Technology related to hardware accelerated neural network subgraphs is disclosed. In one example of the disclosed technology, a method for compiling a neural network model is disclosed. The method includes identifying a subgraph of the neural network model to partition from the neural network model. An interface can be inserted between the neural network model and a partitioned version of the identified subgraph. The partitioned version can be adapted to be evaluated with a neural network accelerator. The identified subgraph can be compiled to the neural network accelerator to generate configuration information for the neural network accelerator. The neural network accelerator can be configured with the configuration information to provide an accelerated version of the subgraph.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZND1cAxyCXcMclVwdHZ29XENcgxxdVHwcw0NcvQBUiHh_kHeCsGhTu5BjgEewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLIwszS3MjR0Jg4VQBgPyaf</recordid><startdate>20190919</startdate><enddate>20190919</enddate><creator>El Husseini, Ahmad Mahdi</creator><creator>Reinhardt, Steven K</creator><creator>Rapsang, Amanda Grace</creator><creator>van Megen, Friedel</creator><creator>Boehn, Christian</creator><scope>EVB</scope></search><sort><creationdate>20190919</creationdate><title>HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS</title><author>El Husseini, Ahmad Mahdi ; Reinhardt, Steven K ; Rapsang, Amanda Grace ; van Megen, Friedel ; Boehn, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019286972A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>El Husseini, Ahmad Mahdi</creatorcontrib><creatorcontrib>Reinhardt, Steven K</creatorcontrib><creatorcontrib>Rapsang, Amanda Grace</creatorcontrib><creatorcontrib>van Megen, Friedel</creatorcontrib><creatorcontrib>Boehn, Christian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>El Husseini, Ahmad Mahdi</au><au>Reinhardt, Steven K</au><au>Rapsang, Amanda Grace</au><au>van Megen, Friedel</au><au>Boehn, Christian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS</title><date>2019-09-19</date><risdate>2019</risdate><abstract>Technology related to hardware accelerated neural network subgraphs is disclosed. In one example of the disclosed technology, a method for compiling a neural network model is disclosed. The method includes identifying a subgraph of the neural network model to partition from the neural network model. An interface can be inserted between the neural network model and a partitioned version of the identified subgraph. The partitioned version can be adapted to be evaluated with a neural network accelerator. The identified subgraph can be compiled to the neural network accelerator to generate configuration information for the neural network accelerator. The neural network accelerator can be configured with the configuration information to provide an accelerated version of the subgraph.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019286972A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | HARDWARE ACCELERATED NEURAL NETWORK SUBGRAPHS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=El%20Husseini,%20Ahmad%20Mahdi&rft.date=2019-09-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019286972A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |