SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC

A system for monitoring a live-data flow through a network includes at least one server communicating with the network. A processor within each of the at least one server implements a first processing node for monitoring a mirrored live-data flow of the live-data flow passing through at least one se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Richards, Peter, Richards, Carissa
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Richards, Peter
Richards, Carissa
description A system for monitoring a live-data flow through a network includes at least one server communicating with the network. A processor within each of the at least one server implements a first processing node for monitoring a mirrored live-data flow of the live-data flow passing through at least one selected point within the network in a non-intrusive manner that does not affect the live-data flow passing through the at least one selected point. The first processing node decodes data within the mirrored live-data flow according to each protocol associated with the data. The first processing node detects at least one predetermined or deduced condition defined by at least one of a plurality of applications implemented on a second processing node and executes at least one predetermined or deduced response responsive to an indication of occurrence of the at least one predetermined or deduced condition within the decoded data. The first processing node also forwards data from the first processing node to a second processing node data from at least one of the plurality of simultaneous live-data flows based upon occurrence of the at least one predetermined or deduced condition. The processor within the at least one server the processor further implements the second processing node for accessing from the second processing node, external data from an external data source. The second processing node also processes at least a portion of the data forwarded from the first processing node using at least one of the plurality of applications implemented on the second processing node and the external data. The processing of the data by the at least one of the plurality of applications and the external data causes execution of the at least one predetermined or deduced response to determine a manner for controlling an operation of the network at a same time the live-data flow is in active transmission between the endpoints in the network. The operation of the network is controlled in response to the executed at least one predetermined or deduced response while events associated with the live-data flow are occurring within the network.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019281167A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019281167A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019281167A13</originalsourceid><addsrcrecordid>eNrjZLAOjgwOcfVVcPRzUfB1DfHwd1Fw8w9SCHJ19NEN8fR1BUo4-kQGewYr-Lsp-LmGhPsHeSuEBDm6uXk68zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDSyMLQ0Mzc0dDY-JUAQBytCoi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC</title><source>esp@cenet</source><creator>Richards, Peter ; Richards, Carissa</creator><creatorcontrib>Richards, Peter ; Richards, Carissa</creatorcontrib><description>A system for monitoring a live-data flow through a network includes at least one server communicating with the network. A processor within each of the at least one server implements a first processing node for monitoring a mirrored live-data flow of the live-data flow passing through at least one selected point within the network in a non-intrusive manner that does not affect the live-data flow passing through the at least one selected point. The first processing node decodes data within the mirrored live-data flow according to each protocol associated with the data. The first processing node detects at least one predetermined or deduced condition defined by at least one of a plurality of applications implemented on a second processing node and executes at least one predetermined or deduced response responsive to an indication of occurrence of the at least one predetermined or deduced condition within the decoded data. The first processing node also forwards data from the first processing node to a second processing node data from at least one of the plurality of simultaneous live-data flows based upon occurrence of the at least one predetermined or deduced condition. The processor within the at least one server the processor further implements the second processing node for accessing from the second processing node, external data from an external data source. The second processing node also processes at least a portion of the data forwarded from the first processing node using at least one of the plurality of applications implemented on the second processing node and the external data. The processing of the data by the at least one of the plurality of applications and the external data causes execution of the at least one predetermined or deduced response to determine a manner for controlling an operation of the network at a same time the live-data flow is in active transmission between the endpoints in the network. The operation of the network is controlled in response to the executed at least one predetermined or deduced response while events associated with the live-data flow are occurring within the network.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TELEPHONIC COMMUNICATION ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190912&amp;DB=EPODOC&amp;CC=US&amp;NR=2019281167A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190912&amp;DB=EPODOC&amp;CC=US&amp;NR=2019281167A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Richards, Peter</creatorcontrib><creatorcontrib>Richards, Carissa</creatorcontrib><title>SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC</title><description>A system for monitoring a live-data flow through a network includes at least one server communicating with the network. A processor within each of the at least one server implements a first processing node for monitoring a mirrored live-data flow of the live-data flow passing through at least one selected point within the network in a non-intrusive manner that does not affect the live-data flow passing through the at least one selected point. The first processing node decodes data within the mirrored live-data flow according to each protocol associated with the data. The first processing node detects at least one predetermined or deduced condition defined by at least one of a plurality of applications implemented on a second processing node and executes at least one predetermined or deduced response responsive to an indication of occurrence of the at least one predetermined or deduced condition within the decoded data. The first processing node also forwards data from the first processing node to a second processing node data from at least one of the plurality of simultaneous live-data flows based upon occurrence of the at least one predetermined or deduced condition. The processor within the at least one server the processor further implements the second processing node for accessing from the second processing node, external data from an external data source. The second processing node also processes at least a portion of the data forwarded from the first processing node using at least one of the plurality of applications implemented on the second processing node and the external data. The processing of the data by the at least one of the plurality of applications and the external data causes execution of the at least one predetermined or deduced response to determine a manner for controlling an operation of the network at a same time the live-data flow is in active transmission between the endpoints in the network. The operation of the network is controlled in response to the executed at least one predetermined or deduced response while events associated with the live-data flow are occurring within the network.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TELEPHONIC COMMUNICATION</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAOjgwOcfVVcPRzUfB1DfHwd1Fw8w9SCHJ19NEN8fR1BUo4-kQGewYr-Lsp-LmGhPsHeSuEBDm6uXk68zCwpiXmFKfyQmluBmU31xBnD93Ugvz41OKCxOTUvNSS-NBgIwNDSyMLQ0Mzc0dDY-JUAQBytCoi</recordid><startdate>20190912</startdate><enddate>20190912</enddate><creator>Richards, Peter</creator><creator>Richards, Carissa</creator><scope>EVB</scope></search><sort><creationdate>20190912</creationdate><title>SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC</title><author>Richards, Peter ; Richards, Carissa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019281167A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TELEPHONIC COMMUNICATION</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Richards, Peter</creatorcontrib><creatorcontrib>Richards, Carissa</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Richards, Peter</au><au>Richards, Carissa</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC</title><date>2019-09-12</date><risdate>2019</risdate><abstract>A system for monitoring a live-data flow through a network includes at least one server communicating with the network. A processor within each of the at least one server implements a first processing node for monitoring a mirrored live-data flow of the live-data flow passing through at least one selected point within the network in a non-intrusive manner that does not affect the live-data flow passing through the at least one selected point. The first processing node decodes data within the mirrored live-data flow according to each protocol associated with the data. The first processing node detects at least one predetermined or deduced condition defined by at least one of a plurality of applications implemented on a second processing node and executes at least one predetermined or deduced response responsive to an indication of occurrence of the at least one predetermined or deduced condition within the decoded data. The first processing node also forwards data from the first processing node to a second processing node data from at least one of the plurality of simultaneous live-data flows based upon occurrence of the at least one predetermined or deduced condition. The processor within the at least one server the processor further implements the second processing node for accessing from the second processing node, external data from an external data source. The second processing node also processes at least a portion of the data forwarded from the first processing node using at least one of the plurality of applications implemented on the second processing node and the external data. The processing of the data by the at least one of the plurality of applications and the external data causes execution of the at least one predetermined or deduced response to determine a manner for controlling an operation of the network at a same time the live-data flow is in active transmission between the endpoints in the network. The operation of the network is controlled in response to the executed at least one predetermined or deduced response while events associated with the live-data flow are occurring within the network.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019281167A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TELEPHONIC COMMUNICATION
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title SYSTEM AND METHOD FOR REAL-TIME ANALYSIS OF NETWORK TRAFFIC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Richards,%20Peter&rft.date=2019-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019281167A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true