RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS
Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the me...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Joshi, Gauri Arroyo, Diana Jeanne Dube, Parijat Sura, Zehra Noman Costache, Stefania Victoria Nagpurkar, Priya Ashok |
description | Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019258964A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019258964A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019258964A13</originalsourceid><addsrcrecordid>eNrjZNANCvUL8fR1VXANBlKOIZ7-fgpu_kEKvo7OHp5-rgo-ro5Bfp5-7gohjsHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLI1MLSzMTR0Jg4VQBjeCaX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><source>esp@cenet</source><creator>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</creator><creatorcontrib>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</creatorcontrib><description>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190822&DB=EPODOC&CC=US&NR=2019258964A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190822&DB=EPODOC&CC=US&NR=2019258964A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Joshi, Gauri</creatorcontrib><creatorcontrib>Arroyo, Diana Jeanne</creatorcontrib><creatorcontrib>Dube, Parijat</creatorcontrib><creatorcontrib>Sura, Zehra Noman</creatorcontrib><creatorcontrib>Costache, Stefania Victoria</creatorcontrib><creatorcontrib>Nagpurkar, Priya Ashok</creatorcontrib><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><description>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNANCvUL8fR1VXANBlKOIZ7-fgpu_kEKvo7OHp5-rgo-ro5Bfp5-7gohjsHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLI1MLSzMTR0Jg4VQBjeCaX</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Joshi, Gauri</creator><creator>Arroyo, Diana Jeanne</creator><creator>Dube, Parijat</creator><creator>Sura, Zehra Noman</creator><creator>Costache, Stefania Victoria</creator><creator>Nagpurkar, Priya Ashok</creator><scope>EVB</scope></search><sort><creationdate>20190822</creationdate><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><author>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019258964A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Gauri</creatorcontrib><creatorcontrib>Arroyo, Diana Jeanne</creatorcontrib><creatorcontrib>Dube, Parijat</creatorcontrib><creatorcontrib>Sura, Zehra Noman</creatorcontrib><creatorcontrib>Costache, Stefania Victoria</creatorcontrib><creatorcontrib>Nagpurkar, Priya Ashok</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joshi, Gauri</au><au>Arroyo, Diana Jeanne</au><au>Dube, Parijat</au><au>Sura, Zehra Noman</au><au>Costache, Stefania Victoria</au><au>Nagpurkar, Priya Ashok</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><date>2019-08-22</date><risdate>2019</risdate><abstract>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019258964A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Joshi,%20Gauri&rft.date=2019-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019258964A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |