RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS

Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joshi, Gauri, Arroyo, Diana Jeanne, Dube, Parijat, Sura, Zehra Noman, Costache, Stefania Victoria, Nagpurkar, Priya Ashok
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Joshi, Gauri
Arroyo, Diana Jeanne
Dube, Parijat
Sura, Zehra Noman
Costache, Stefania Victoria
Nagpurkar, Priya Ashok
description Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019258964A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019258964A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019258964A13</originalsourceid><addsrcrecordid>eNrjZNANCvUL8fR1VXANBlKOIZ7-fgpu_kEKvo7OHp5-rgo-ro5Bfp5-7gohjsHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLI1MLSzMTR0Jg4VQBjeCaX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><source>esp@cenet</source><creator>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</creator><creatorcontrib>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</creatorcontrib><description>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190822&amp;DB=EPODOC&amp;CC=US&amp;NR=2019258964A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190822&amp;DB=EPODOC&amp;CC=US&amp;NR=2019258964A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Joshi, Gauri</creatorcontrib><creatorcontrib>Arroyo, Diana Jeanne</creatorcontrib><creatorcontrib>Dube, Parijat</creatorcontrib><creatorcontrib>Sura, Zehra Noman</creatorcontrib><creatorcontrib>Costache, Stefania Victoria</creatorcontrib><creatorcontrib>Nagpurkar, Priya Ashok</creatorcontrib><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><description>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNANCvUL8fR1VXANBlKOIZ7-fgpu_kEKvo7OHp5-rgo-ro5Bfp5-7gohjsHewTwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD402MjA0NLI1MLSzMTR0Jg4VQBjeCaX</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Joshi, Gauri</creator><creator>Arroyo, Diana Jeanne</creator><creator>Dube, Parijat</creator><creator>Sura, Zehra Noman</creator><creator>Costache, Stefania Victoria</creator><creator>Nagpurkar, Priya Ashok</creator><scope>EVB</scope></search><sort><creationdate>20190822</creationdate><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><author>Joshi, Gauri ; Arroyo, Diana Jeanne ; Dube, Parijat ; Sura, Zehra Noman ; Costache, Stefania Victoria ; Nagpurkar, Priya Ashok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019258964A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Gauri</creatorcontrib><creatorcontrib>Arroyo, Diana Jeanne</creatorcontrib><creatorcontrib>Dube, Parijat</creatorcontrib><creatorcontrib>Sura, Zehra Noman</creatorcontrib><creatorcontrib>Costache, Stefania Victoria</creatorcontrib><creatorcontrib>Nagpurkar, Priya Ashok</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Joshi, Gauri</au><au>Arroyo, Diana Jeanne</au><au>Dube, Parijat</au><au>Sura, Zehra Noman</au><au>Costache, Stefania Victoria</au><au>Nagpurkar, Priya Ashok</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS</title><date>2019-08-22</date><risdate>2019</risdate><abstract>Techniques for estimating runtimes of one or more machine learning tasks are provided. For example, one or more embodiments described herein can regard a system that can comprise a memory that stores computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise an extraction component that can extract a parameter from a machine learning task. The parameter can define a performance characteristic of the machine learning task. Also, the computer executable components can comprise a model component that can generate a model based on the parameter. Further, the computer executable components can comprise an estimation component that can generate an estimated runtime of the machine learning task based on the model. The estimated runtime can define a period of time beginning at an initiation of the machine learning task and ending at a completion of the machine learning task.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019258964A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title RUNTIME ESTIMATION FOR MACHINE LEARNING TASKS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A20%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Joshi,%20Gauri&rft.date=2019-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019258964A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true