STOLEN MACHINE LEARNING MODEL IDENTIFICATION
One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Sankaranarayanan, Karthik Pimplikar, Rakesh R Mehta, Sameep |
description | One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019258783A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019258783A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019258783A13</originalsourceid><addsrcrecordid>eNrjZNAJDvH3cfVT8HV09vD0c1XwcXUM8vP0c1fw9Xdx9VHwdHH1C_F083R2DPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpZGphbmFsaOhsbEqQIALgsmNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><source>esp@cenet</source><creator>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</creator><creatorcontrib>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</creatorcontrib><description>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190822&DB=EPODOC&CC=US&NR=2019258783A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190822&DB=EPODOC&CC=US&NR=2019258783A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sankaranarayanan, Karthik</creatorcontrib><creatorcontrib>Pimplikar, Rakesh R</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><description>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAJDvH3cfVT8HV09vD0c1XwcXUM8vP0c1fw9Xdx9VHwdHH1C_F083R2DPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpZGphbmFsaOhsbEqQIALgsmNg</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Sankaranarayanan, Karthik</creator><creator>Pimplikar, Rakesh R</creator><creator>Mehta, Sameep</creator><scope>EVB</scope></search><sort><creationdate>20190822</creationdate><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><author>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019258783A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sankaranarayanan, Karthik</creatorcontrib><creatorcontrib>Pimplikar, Rakesh R</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sankaranarayanan, Karthik</au><au>Pimplikar, Rakesh R</au><au>Mehta, Sameep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><date>2019-08-22</date><risdate>2019</risdate><abstract>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019258783A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | STOLEN MACHINE LEARNING MODEL IDENTIFICATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sankaranarayanan,%20Karthik&rft.date=2019-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019258783A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |