STOLEN MACHINE LEARNING MODEL IDENTIFICATION

One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sankaranarayanan, Karthik, Pimplikar, Rakesh R, Mehta, Sameep
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Sankaranarayanan, Karthik
Pimplikar, Rakesh R
Mehta, Sameep
description One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019258783A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019258783A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019258783A13</originalsourceid><addsrcrecordid>eNrjZNAJDvH3cfVT8HV09vD0c1XwcXUM8vP0c1fw9Xdx9VHwdHH1C_F083R2DPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpZGphbmFsaOhsbEqQIALgsmNg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><source>esp@cenet</source><creator>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</creator><creatorcontrib>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</creatorcontrib><description>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190822&amp;DB=EPODOC&amp;CC=US&amp;NR=2019258783A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190822&amp;DB=EPODOC&amp;CC=US&amp;NR=2019258783A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Sankaranarayanan, Karthik</creatorcontrib><creatorcontrib>Pimplikar, Rakesh R</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><description>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAJDvH3cfVT8HV09vD0c1XwcXUM8vP0c1fw9Xdx9VHwdHH1C_F083R2DPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfGhwUYGhpZGphbmFsaOhsbEqQIALgsmNg</recordid><startdate>20190822</startdate><enddate>20190822</enddate><creator>Sankaranarayanan, Karthik</creator><creator>Pimplikar, Rakesh R</creator><creator>Mehta, Sameep</creator><scope>EVB</scope></search><sort><creationdate>20190822</creationdate><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><author>Sankaranarayanan, Karthik ; Pimplikar, Rakesh R ; Mehta, Sameep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019258783A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Sankaranarayanan, Karthik</creatorcontrib><creatorcontrib>Pimplikar, Rakesh R</creatorcontrib><creatorcontrib>Mehta, Sameep</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sankaranarayanan, Karthik</au><au>Pimplikar, Rakesh R</au><au>Mehta, Sameep</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>STOLEN MACHINE LEARNING MODEL IDENTIFICATION</title><date>2019-08-22</date><risdate>2019</risdate><abstract>One embodiment provides a method, including: assigning a machine learning model signature to a machine learning model, wherein the machine learning model signature is generated using (i) data points and (ii) corresponding data labels from training data; receiving input comprising identification of a target machine learning model; acquiring a target signature for the target machine learning model by generating a signature for the target machine learning model using (i) data points from the assigned machine learning model signature and (ii) labels assigned to those data points by the target machine learning model; determining a stolen score by comparing the target signature to the machine learning model signature and identifying the number of data labels that match between the target signature and the machine learning model signature; and classifying the target machine learning model as stolen based upon the stolen score reaching a predetermined threshold.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019258783A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title STOLEN MACHINE LEARNING MODEL IDENTIFICATION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A55%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Sankaranarayanan,%20Karthik&rft.date=2019-08-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019258783A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true