SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE

Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fordyce, Alexander Carmelo Reid, Webb-Purkis, William Dominic, Gainor, Macgregor S, Bredlow, Caleb Andrew, Sargent, Kyle, Ginstrom, Ryan Francis, Koepf, Werner, Jonnalagadda, Siddhartha Reddy, Harriger, James D, Terry, George Alexis, McCann, Ian
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fordyce, Alexander Carmelo Reid
Webb-Purkis, William Dominic
Gainor, Macgregor S
Bredlow, Caleb Andrew
Sargent, Kyle
Ginstrom, Ryan Francis
Koepf, Werner
Jonnalagadda, Siddhartha Reddy
Harriger, James D
Terry, George Alexis
McCann, Ian
description Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a distributed computing setting the parameters may be optimized, and the models deployed. The training data may be augmented over time to improve the models. Deep learning models may be employed to improve system accuracy, as can active learning techniques. The models developed and updated may be employed by a response system generally, or may function to enable specific types of AI systems. One such a system may be an AI assistant that is designed to take use cases and objectives, and execute tasks until the objectives are met. Another system capable of leveraging the models includes an automated question answering system utilizing approved answers. Yet another system for utilizing these various classification models is an intent based classification system for action determination. Lastly, it should be noted that any of the above systems may be further enhanced by enabling multiple language analysis.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019179903A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019179903A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019179903A13</originalsourceid><addsrcrecordid>eNrjZHAIjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1LwDfUJ8VTwcfRzD3V0d1VwDA3x93UMcXVRcHQO8fT3UwhyDQ7w9wt25WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGlobmlpYGxo6GxsSpAgBsRCvT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE</title><source>esp@cenet</source><creator>Fordyce, Alexander Carmelo Reid ; Webb-Purkis, William Dominic ; Gainor, Macgregor S ; Bredlow, Caleb Andrew ; Sargent, Kyle ; Ginstrom, Ryan Francis ; Koepf, Werner ; Jonnalagadda, Siddhartha Reddy ; Harriger, James D ; Terry, George Alexis ; McCann, Ian</creator><creatorcontrib>Fordyce, Alexander Carmelo Reid ; Webb-Purkis, William Dominic ; Gainor, Macgregor S ; Bredlow, Caleb Andrew ; Sargent, Kyle ; Ginstrom, Ryan Francis ; Koepf, Werner ; Jonnalagadda, Siddhartha Reddy ; Harriger, James D ; Terry, George Alexis ; McCann, Ian</creatorcontrib><description>Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a distributed computing setting the parameters may be optimized, and the models deployed. The training data may be augmented over time to improve the models. Deep learning models may be employed to improve system accuracy, as can active learning techniques. The models developed and updated may be employed by a response system generally, or may function to enable specific types of AI systems. One such a system may be an AI assistant that is designed to take use cases and objectives, and execute tasks until the objectives are met. Another system capable of leveraging the models includes an automated question answering system utilizing approved answers. Yet another system for utilizing these various classification models is an intent based classification system for action determination. Lastly, it should be noted that any of the above systems may be further enhanced by enabling multiple language analysis.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190613&amp;DB=EPODOC&amp;CC=US&amp;NR=2019179903A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190613&amp;DB=EPODOC&amp;CC=US&amp;NR=2019179903A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fordyce, Alexander Carmelo Reid</creatorcontrib><creatorcontrib>Webb-Purkis, William Dominic</creatorcontrib><creatorcontrib>Gainor, Macgregor S</creatorcontrib><creatorcontrib>Bredlow, Caleb Andrew</creatorcontrib><creatorcontrib>Sargent, Kyle</creatorcontrib><creatorcontrib>Ginstrom, Ryan Francis</creatorcontrib><creatorcontrib>Koepf, Werner</creatorcontrib><creatorcontrib>Jonnalagadda, Siddhartha Reddy</creatorcontrib><creatorcontrib>Harriger, James D</creatorcontrib><creatorcontrib>Terry, George Alexis</creatorcontrib><creatorcontrib>McCann, Ian</creatorcontrib><title>SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE</title><description>Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a distributed computing setting the parameters may be optimized, and the models deployed. The training data may be augmented over time to improve the models. Deep learning models may be employed to improve system accuracy, as can active learning techniques. The models developed and updated may be employed by a response system generally, or may function to enable specific types of AI systems. One such a system may be an AI assistant that is designed to take use cases and objectives, and execute tasks until the objectives are met. Another system capable of leveraging the models includes an automated question answering system utilizing approved answers. Yet another system for utilizing these various classification models is an intent based classification system for action determination. Lastly, it should be noted that any of the above systems may be further enhanced by enabling multiple language analysis.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIjgwOcfUNVnD0c1HwdQ3x8HcJVnDzD1LwDfUJ8VTwcfRzD3V0d1VwDA3x93UMcXVRcHQO8fT3UwhyDQ7w9wt25WFgTUvMKU7lhdLcDMpuriHOHrqpBfnxqcUFicmpeakl8aHBRgaGlobmlpYGxo6GxsSpAgBsRCvT</recordid><startdate>20190613</startdate><enddate>20190613</enddate><creator>Fordyce, Alexander Carmelo Reid</creator><creator>Webb-Purkis, William Dominic</creator><creator>Gainor, Macgregor S</creator><creator>Bredlow, Caleb Andrew</creator><creator>Sargent, Kyle</creator><creator>Ginstrom, Ryan Francis</creator><creator>Koepf, Werner</creator><creator>Jonnalagadda, Siddhartha Reddy</creator><creator>Harriger, James D</creator><creator>Terry, George Alexis</creator><creator>McCann, Ian</creator><scope>EVB</scope></search><sort><creationdate>20190613</creationdate><title>SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE</title><author>Fordyce, Alexander Carmelo Reid ; Webb-Purkis, William Dominic ; Gainor, Macgregor S ; Bredlow, Caleb Andrew ; Sargent, Kyle ; Ginstrom, Ryan Francis ; Koepf, Werner ; Jonnalagadda, Siddhartha Reddy ; Harriger, James D ; Terry, George Alexis ; McCann, Ian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019179903A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Fordyce, Alexander Carmelo Reid</creatorcontrib><creatorcontrib>Webb-Purkis, William Dominic</creatorcontrib><creatorcontrib>Gainor, Macgregor S</creatorcontrib><creatorcontrib>Bredlow, Caleb Andrew</creatorcontrib><creatorcontrib>Sargent, Kyle</creatorcontrib><creatorcontrib>Ginstrom, Ryan Francis</creatorcontrib><creatorcontrib>Koepf, Werner</creatorcontrib><creatorcontrib>Jonnalagadda, Siddhartha Reddy</creatorcontrib><creatorcontrib>Harriger, James D</creatorcontrib><creatorcontrib>Terry, George Alexis</creatorcontrib><creatorcontrib>McCann, Ian</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fordyce, Alexander Carmelo Reid</au><au>Webb-Purkis, William Dominic</au><au>Gainor, Macgregor S</au><au>Bredlow, Caleb Andrew</au><au>Sargent, Kyle</au><au>Ginstrom, Ryan Francis</au><au>Koepf, Werner</au><au>Jonnalagadda, Siddhartha Reddy</au><au>Harriger, James D</au><au>Terry, George Alexis</au><au>McCann, Ian</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE</title><date>2019-06-13</date><risdate>2019</risdate><abstract>Systems and methods for improvements in AI model learning and updating are provided. The model updating may reuse existing business conversations as the training data set. Features within the dataset may be defined and extracted. Models may be selected and parameters for the models defined. Within a distributed computing setting the parameters may be optimized, and the models deployed. The training data may be augmented over time to improve the models. Deep learning models may be employed to improve system accuracy, as can active learning techniques. The models developed and updated may be employed by a response system generally, or may function to enable specific types of AI systems. One such a system may be an AI assistant that is designed to take use cases and objectives, and execute tasks until the objectives are met. Another system capable of leveraging the models includes an automated question answering system utilizing approved answers. Yet another system for utilizing these various classification models is an intent based classification system for action determination. Lastly, it should be noted that any of the above systems may be further enhanced by enabling multiple language analysis.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019179903A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title SYSTEMS AND METHODS FOR MULTI LANGUAGE AUTOMATED ACTION RESPONSE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Fordyce,%20Alexander%20Carmelo%20Reid&rft.date=2019-06-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019179903A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true