PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING

Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GEEVARGHESE, Jeffrey John, GOODHART, Taylor, FAULHABER, JR., Thomas Albert, ANJANEYAPURA RANGE, Gowda Dayananda, SWAN, Charles Drummond
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GEEVARGHESE, Jeffrey John
GOODHART, Taylor
FAULHABER, JR., Thomas Albert
ANJANEYAPURA RANGE, Gowda Dayananda
SWAN, Charles Drummond
description Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019155633A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019155633A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019155633A13</originalsourceid><addsrcrecordid>eNrjZHAIcHT2dnT39HNXcPRzUXBxDfDxjwTzfNz9gzxDPHyDFdz8gxTcfFwjPJ18XBV8HZ09PP1cFXxcHYP8gAp5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGloampmbGxo6ExcaoAQncrdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><source>esp@cenet</source><creator>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</creator><creatorcontrib>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</creatorcontrib><description>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190523&amp;DB=EPODOC&amp;CC=US&amp;NR=2019155633A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190523&amp;DB=EPODOC&amp;CC=US&amp;NR=2019155633A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GEEVARGHESE, Jeffrey John</creatorcontrib><creatorcontrib>GOODHART, Taylor</creatorcontrib><creatorcontrib>FAULHABER, JR., Thomas Albert</creatorcontrib><creatorcontrib>ANJANEYAPURA RANGE, Gowda Dayananda</creatorcontrib><creatorcontrib>SWAN, Charles Drummond</creatorcontrib><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><description>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIcHT2dnT39HNXcPRzUXBxDfDxjwTzfNz9gzxDPHyDFdz8gxTcfFwjPJ18XBV8HZ09PP1cFXxcHYP8gAp5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGloampmbGxo6ExcaoAQncrdQ</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>GEEVARGHESE, Jeffrey John</creator><creator>GOODHART, Taylor</creator><creator>FAULHABER, JR., Thomas Albert</creator><creator>ANJANEYAPURA RANGE, Gowda Dayananda</creator><creator>SWAN, Charles Drummond</creator><scope>EVB</scope></search><sort><creationdate>20190523</creationdate><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><author>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019155633A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GEEVARGHESE, Jeffrey John</creatorcontrib><creatorcontrib>GOODHART, Taylor</creatorcontrib><creatorcontrib>FAULHABER, JR., Thomas Albert</creatorcontrib><creatorcontrib>ANJANEYAPURA RANGE, Gowda Dayananda</creatorcontrib><creatorcontrib>SWAN, Charles Drummond</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GEEVARGHESE, Jeffrey John</au><au>GOODHART, Taylor</au><au>FAULHABER, JR., Thomas Albert</au><au>ANJANEYAPURA RANGE, Gowda Dayananda</au><au>SWAN, Charles Drummond</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><date>2019-05-23</date><risdate>2019</risdate><abstract>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US2019155633A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GEEVARGHESE,%20Jeffrey%20John&rft.date=2019-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019155633A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true