PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING
Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code fo...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GEEVARGHESE, Jeffrey John GOODHART, Taylor FAULHABER, JR., Thomas Albert ANJANEYAPURA RANGE, Gowda Dayananda SWAN, Charles Drummond |
description | Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US2019155633A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US2019155633A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US2019155633A13</originalsourceid><addsrcrecordid>eNrjZHAIcHT2dnT39HNXcPRzUXBxDfDxjwTzfNz9gzxDPHyDFdz8gxTcfFwjPJ18XBV8HZ09PP1cFXxcHYP8gAp5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGloampmbGxo6ExcaoAQncrdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><source>esp@cenet</source><creator>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</creator><creatorcontrib>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</creatorcontrib><description>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190523&DB=EPODOC&CC=US&NR=2019155633A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190523&DB=EPODOC&CC=US&NR=2019155633A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GEEVARGHESE, Jeffrey John</creatorcontrib><creatorcontrib>GOODHART, Taylor</creatorcontrib><creatorcontrib>FAULHABER, JR., Thomas Albert</creatorcontrib><creatorcontrib>ANJANEYAPURA RANGE, Gowda Dayananda</creatorcontrib><creatorcontrib>SWAN, Charles Drummond</creatorcontrib><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><description>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIcHT2dnT39HNXcPRzUXBxDfDxjwTzfNz9gzxDPHyDFdz8gxTcfFwjPJ18XBV8HZ09PP1cFXxcHYP8gAp5GFjTEnOKU3mhNDeDsptriLOHbmpBfnxqcUFicmpeakl8aLCRgaGloampmbGxo6ExcaoAQncrdQ</recordid><startdate>20190523</startdate><enddate>20190523</enddate><creator>GEEVARGHESE, Jeffrey John</creator><creator>GOODHART, Taylor</creator><creator>FAULHABER, JR., Thomas Albert</creator><creator>ANJANEYAPURA RANGE, Gowda Dayananda</creator><creator>SWAN, Charles Drummond</creator><scope>EVB</scope></search><sort><creationdate>20190523</creationdate><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><author>GEEVARGHESE, Jeffrey John ; GOODHART, Taylor ; FAULHABER, JR., Thomas Albert ; ANJANEYAPURA RANGE, Gowda Dayananda ; SWAN, Charles Drummond</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US2019155633A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>GEEVARGHESE, Jeffrey John</creatorcontrib><creatorcontrib>GOODHART, Taylor</creatorcontrib><creatorcontrib>FAULHABER, JR., Thomas Albert</creatorcontrib><creatorcontrib>ANJANEYAPURA RANGE, Gowda Dayananda</creatorcontrib><creatorcontrib>SWAN, Charles Drummond</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GEEVARGHESE, Jeffrey John</au><au>GOODHART, Taylor</au><au>FAULHABER, JR., Thomas Albert</au><au>ANJANEYAPURA RANGE, Gowda Dayananda</au><au>SWAN, Charles Drummond</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING</title><date>2019-05-23</date><risdate>2019</risdate><abstract>Techniques for packaging and deploying algorithms utilizing containers for flexible machine learning are described. In some embodiments, users can create or utilize simple containers adhering to a specification of a machine learning service in a provider network, where the containers include code for how a machine learning model is to be trained and/or executed. The machine learning service can automatically train a model and/or host a model using the containers. The containers can use a wide variety of algorithms and use a variety of types of languages, libraries, data types, etc. Users can thus implement machine learning training and/or hosting with extremely minimal knowledge of how the overall training and/or hosting is actually performed.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US2019155633A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | PACKAGING AND DEPLOYING ALGORITHMS FOR FLEXIBLE MACHINE LEARNING |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GEEVARGHESE,%20Jeffrey%20John&rft.date=2019-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS2019155633A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |